
MDD Propagation for Disjunctive Scheduling

André A. Ciré and Willem-Jan van Hoeve

Tepper School of Business

Carnegie Mellon University

(paper at ICAPS 2012)

Acknowledgments: NSF, Google

Outline

• Motivation

• Disjunctive Scheduling

• MDD representation

• Filtering and precedence relations

• Experimental results

• Conclusion

2

Decision Diagrams

• Binary Decision Diagrams were introduced to compactly

represent Boolean functions [Lee, 1959], [Akers, 1978], [Bryant, 1986]

• BDD: merge isomorphic subtrees of a given binary decision tree

• MDDs are multi-valued decision diagrams (i.e., for discrete

variables)
3

f(x1, x2, x3) = -x1 * -x2 * -x3 + x1 * x1 * x2 + x2 * x3

: 0

: 1

)32()21()321()3,2,1(xxxxxxxxxxf ∧∨∧∨¬∧¬∧¬=

4

Motivation

Constraint Programming applies

• systematic search and

• inference techniques

to solve combinatorial problems

Inference mainly takes place through:

• Filtering provably inconsistent values from variable domains

• Propagating the updated domains to other constraints

x1 < x2

x1 ∈ {1,2}, x2 ∈ {1,2,3}, x3 ∈ {2,3}

alldifferent(x1,x2,x3)

x2 ∈ {2,3}

x1 ∈ {1}

5

Illustrative Example

AllEqual(x1, x2,…, xn), all xi binary

x2

xn-1

xn

x1
{0,1}

{0,1}

domain representation, size 2n

{0,1}

{0,1}

x1 + x2 + … + xn ≥ n/2

{1}

{0}

{0}

{0}

{0}

{1}

{1}

{1}

MDD representation, size 2

6

Drawback of domain propagation

• All structural relationships among variables are

projected onto the domains

• Potential solution space implicitly defined by Cartesian

product of variable domains (very coarse relaxation)

We can communicate more information between

constraint using MDDs [Andersen et al. 2007]

• Explicit representation of more refined potential

solution space (can still be exponentially large)

• Limited width defines relaxation MDD

• Strength is controlled by the imposed width

7

MDD-based Constraint Programming

• Maintain limited-width MDD

– Serves as relaxation

– Typically start with width 1 (initial variable domains)

– Dynamically adjust MDD, based on constraints

• Constraint Propagation

– Edge filtering: Remove provably inconsistent edges (those

that do not participate in any solution)

– Node refinement: Split nodes to separate edge information

• Search

– As in classical CP, but may now be guided by MDD

Specific MDD propagation algorithms

• Linear equalities and inequalities [Hadzic et al., 2008]

[Hoda et al., 2010]

• Alldifferent constraints [Andersen et al., 2007]

• Element constraints [Hoda et al., 2010]

• Among constraints [Hoda et al., 2010]

• Disjunctive scheduling constraints [Hoda et al., 2010]

[Cire & v.H., 2012]

• Sequence constraints (combination of Amongs)
[v.H., 2011]

• Generic re-application of existing domain filtering

algorithm for any constraint type [Hoda et al., 2010]

8

Disjunctive Scheduling

9

Constraint-Based Scheduling

• Disjunctive scheduling may be viewed as the ‘killer

application’ for CP

– Natural modeling (activities and resources)

– Allows many side constraints (precedence relations, time

windows, setup times, etc.)

– State of the art while being generic methodology

• However, CP has some problems when

– objective is not minimize makespan (but instead, e.g.,

weighted sum)

– setup times are present

– …

• What can MDDs bring here?
10

Disjunctive Scheduling

• Sequencing and scheduling of activities on a resource

• Activities

– Processing time: pi

– Release time: ri

– Deadline: di

– Start time variable: si

• Resource

– Nonpreemptive

– Process one activity at a time

Activity 1

Activity 2

Activity 3

0 1 2 3 4

11

Common Side Constraints

• Precedence relations between activities

• Sequence-dependent setup times

• Induced by objective function

– Makespan

– Sum of setup times

– Sum of completion times

– Tardiness / number of late jobs

– …

12

Inference

• Inference for disjunctive scheduling

– Precedence relations

– Time intervals that an activity can be processed

• Sophisticated techniques include:

– Edge-Finding

– Not-first / not-last rules

• Examples: 1 ≪ 3

s3 ≥ 3

13

Activity 1

Activity 2

Activity 3

0 1 2 3 4

MDD Representation

• Natural representation as ‘permutation MDD’

• Every solution can be written as a

permutation π

π1, π2 , π3, …, πn : activity sequencing in the resource

• Schedule is implied by a sequence, e.g.:

������� 		 �������
� � ��
� 							� � 2,… , �

14

π
1

π
2

π
3

{2}

{1}

{3}

{3} {2}

Path {1} – {3} – {2} :

0 ≤ start1 ≤ 1

6 ≤ start2 ≤ 7

3 ≤ start3 ≤ 5

15

MDD Representation

Act ri di pi

1 0 3 2

2 4 9 2

3 3 8 3

Exact MDD Compilation

Theorem: Constructing the exact MDD for a Disjunctive

Instance is an NP-Hard problem

Nevertheless, there are interesting restrictions, e.g. (Balas [99]):

� TSP defined on a complete graph

� Given a fixed parameter k, we must satisfy

� ≪ � if � � � 	 � for cities i, j

Lemma: The exact MDD for the TSP above has O(n2k) nodes

Relaxed MDD Propagation

We can apply several propagation algorithms to the

relaxed MDD

• Alldifferent for the permutation structure

• Earliest start time / latest end time

• Precedence relations

17

Constraint Representation in MDDs

• For a given constraint type we maintain specific ‘state

information’ at each node in the MDD

• Computed from incoming arcs (both from top and

from bottom)

• State information is basis for MDD filtering and for

MDD refinement

18

Propagation for disjunctive

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

{1,2,3,4,5}

• State information at

each node i

– labels on all paths: Ai

– labels on some paths: Si

– earliest starting time: Ei

– latest completion time: Li

• Top down example for

arc (u,v)

π
1

π
2

π
3

π
4

…

19

Alldifferent Propagation

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

{1,2,4,5}

� All-paths state: Au

� Labels belonging to all paths

from node r to node u

� Au = {3}

� Thus eliminate {3} from (u,v)

{1,2,3,4,5}

π
1

π
2

π
3

π
4

…

20[Andersen et al., 2007]

Alldifferent Propagation

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

{4,5}

� Some-paths state: Su

� Labels belonging to some

path from node r to node u

� Su = {1,2,3}

� Identification of Hall sets

� Thus eliminate {1,2,3} from

(u,v)
{1,2,4,5}

π
1

π
2

π
3

π
4

…

21

Propagate Earliest Completion Time

π
1

π
2

π
3

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

{4,5} π
4

� Earliest Completion Time: Eu

� Minimum completion time

of all paths from root to

node u

� Similarly: Latest Completion
Time

…

22

Propagate Earliest Completion Time

π
1

π
2

π
3

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

{4,5} π
4� Eu = 7

� Eliminate 4 from (u,v)

{5}

…

23

0

2

4

7

Act ri di pi

1 0 3 2

2 3 7 3

3 1 8 3

4 5 6 1

5 2 10 3

Act ri di pi

1 0 3 2

2 3 7 3

3 1 8 3

4 5 6 1

5 2 10 3

More MDD Inference

Theorem: Given the exact MDD M, we can deduce all implied

activity precedences in polynomial time in the size of M

r

v

t

i

j

� For a node u,

� ��
↓ : values in all paths from root to u

� ��
↑ : values in all paths from node u to terminal

� Precedence relation � ≪ � holds if and only if

for all nodes u in M

� Same technique applies to relaxed MDD:

use ��
↓ and ��

↑

24

Precedence relations: example

25

Activity 1

Activity 2

Activity 3

0 2 4 6 81 3 5 7

Activity 4

π
1

π
2

π
3

{3}

{3}

{1}

{2}

π
4

{2}

{4}

(��
↓ ,��

↑) = (- | 1234)

(1 | 234)

(13 | 24)(12 | 34)

(123 | 4)

(1234 | -)

O(n2|M|) time

1 2

4 3

G

1 2

4 3

G

Arc (i,j) in G if

for some node u in M

and

Communicate Precedence Relations

1. Provide precedence relations from MDD to CP

– update start/end time variables

– other inference techniques may utilize them

2. Filter the MDD using precedence relations from

other (CP) techniques

26

MDD Refinement

• For refinement, we generally want to identify

equivalence classes among nodes in a layer

• Theorem:

Let M represent a Disjunctive Instance. Deciding if two nodes

u and v in M are equivalent is NP-hard.

• In practice, refinement can be based on

– earliest starting time

– latest earliest completion time ri+pi

– alldifferent constraint (Ai and Si states)

27

Experiments

• MDD propagation implemented in IBM ILOG CPLEX

CP Optimizer 12.4 (CPO)

– State-of-the-art constraint based scheduling solver

– Uses a portfolio of inference techniques and LP relaxation

• Main purpose of experiments

– When can MDDs strengthen CP

– Compare stand-alone MDD versus CP

– Compare CP versus CP+MDD (most practical)

28

Problem classes

• Disjunctive instances with

– Sequence-dependent setup times

– Release dates and deadlines

– Precedence relations

• Objectives (that are presented here)

– Minimize makespan

– Minimize sum of setup times

• Benchmarks

– Random instances with varying setup times

– TSP-TW instances (Dumas, Ascheuer, Gendreau)

– Sequential Ordering Problem

29

Test 1: Importance of setup times

Random instances

- 15 jobs

- lex search

- MDD width 16

- min makespan

30

Test 2: Minimize Makespan

• 229 TSPTW instances with up to 100 jobs

• Minimize makespan

• Time limit 7,200s

• Max MDD width is 16

instances solved by CP: 211

instances solved by pure MDD: 216

instances solved by CP+MDD: 225

31

Minimize Makespan: Fails

32

CPO fails

M
D

D
+

C
P

O
 f

a
il

s

101 102 103 104 105 106 107 108

101

102

103

104

105

106

107

108

plot only on

instances that

were solved

by all methods

Minimize Makespan: Time

33

CPO time (s)

M
D

D
+

C
P

O
 t

im
e

 (
s)

10-2 10-1 1 10 102 103 104

10-2

10-1

1

10

102

103

104

Min sum of setup times: Fails

Dumas/Ascheuer

instances

- 20-60 jobs

- lex search

- MDD width: 16

34
CPO fails

P
u

re
 M

D
D

 f
a

il
s

Min sum of setup times: Time

35

Dumas/Ascheuer

instances

- 20-60 jobs

- lex search

- MDD width: 16

P
u

re
 M

D
D

 t
im

e
 (

s)

CPO time (s)

Instances Dumas (TSPTW)

CPO CPO+MDD

Instance Cities Backtracks Time (s) Backtracks Time (s)

n40w40.004 40 480,970 50.81 18 0.06

n60w20.001 60 908,606 199.26 50 0.22

n60w20.002 60 84,074 14.13 46 0.16

n60w20.003 60 > 22,296,012 > 3600 99 0.32

n60w20.004 60 2,685,255 408.34 97 0.24

MDDs have maximum width 16minimize sum of setup times
36

Sequential Ordering Problem

• TSP with precedence constraints (no time windows)

• Instances up to 53 jobs

• Time limit 1,800s

• CPO: default search

• MDD+CPO: search guided by MDD (shortest path)

• Max MDD width 2,048

37

CPO MDD+CPO

Instance Known Bounds Best Solution Time Best Solution Time

br17.10.sop 55 55 TL 55 4.64

br17.12.sop 55 55 TL 55 4.29

ESC07.sop 2125 2125 0 2125 0.07

ESC11.sop 2075 2075 TL 2075 1.25

ESC12.sop 1675 1675 TL 1675 1.48

ESC25.sop 1681 1747 TL 1681 34.89

ESC47.sop 1288 2044 TL 1776 TL

ft53.1.sop [7438,7531] 8028 TL 10376 TL

ft53.2.sop [7630,8335] 8774 TL 11498 TL

ft53.3.sop [9473,10935] 10709 TL 11133 TL * CP improved bound

ft53.4.sop 14425 14504 TL 14425 154.3

p43.1.sop 27990 28230 TL 28140 420.3

p43.2.sop [28175,28330] 28480 TL 28480 776.67 * closed by MDD

p43.3.sop [28366,28680] 28855 TL 28835 251.4 * closed by MDD

p43.4.sop 83005 nosol TL 83005 44.73

prob.42.sop 243 302 TL 256 TL

rbg048a.sop 351 351 TL 386 TL

ry48p.1.sop [15220,15805] 16940 TL 17633 TL

ry48p.2.sop [15524,16666] 18153 TL 18153 TL

ry48p.3.sop [18156,19894] 21116 TL 22382 TL

ry48p.4.sop [29967,31446] 31522 TL 31446 112.67 * closed by MDD

Sequential Ordering Problem Results

38

39

Summary

• MDDs can provide substantial advantage over

traditional domains for constraint propagation

– Strength of MDD can be controlled by the width

– Huge reduction in the amount of backtracking and solution

time is possible

