

MDD Propagation for Disjunctive Scheduling

André A. Ciré and Willem-Jan van Hoeve

Tepper School of Business Carnegie Mellon University

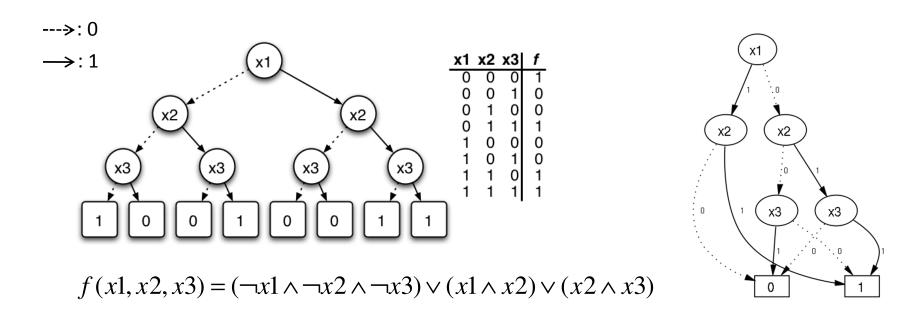
(paper at ICAPS 2012)

Acknowledgments: NSF, Google

Outline

- Motivation
- Disjunctive Scheduling
- MDD representation
- Filtering and precedence relations
- Experimental results
- Conclusion

Decision Diagrams



- Binary Decision Diagrams were introduced to compactly represent Boolean functions [Lee, 1959], [Akers, 1978], [Bryant, 1986]
- BDD: merge isomorphic subtrees of a given binary decision tree
- MDDs are multi-valued decision diagrams (i.e., for discrete variables)

Motivation

Constraint Programming applies

- systematic search and
- inference techniques

to solve combinatorial problems

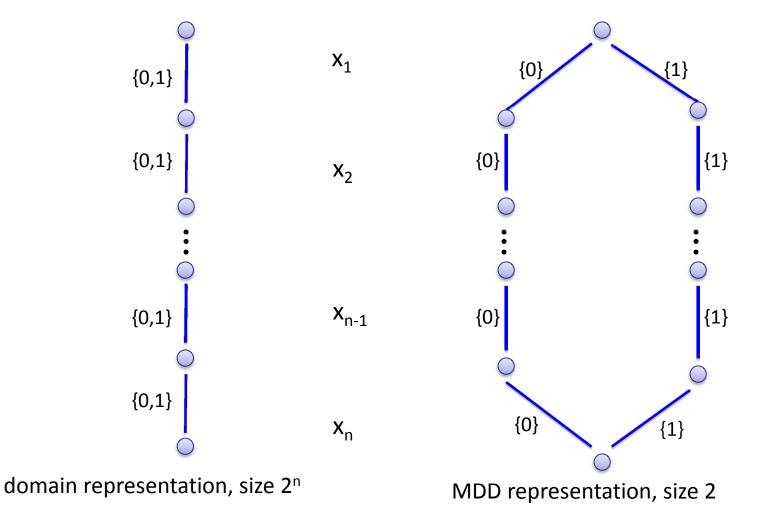
Inference mainly takes place through:

- Filtering provably inconsistent values from variable domains
- Propagating the updated domains to other constraints

$$\begin{array}{c} x_{1} \in \{1,2\}, \, x_{2} \in \{1,2,3\}, \, x_{3} \in \{2,3\} \\ x_{1} < x_{2} & x_{2} \in \{2,3\} \\ all different(x_{1},x_{2},x_{3}) & x_{1} \in \{1\} \end{array}$$

Illustrative Example

AllEqual(
$$x_1, x_2, ..., x_n$$
), all x_i binary
 $x_1 + x_2 + ... + x_n \ge n/2$



Drawback of domain propagation

- All structural relationships among variables are projected onto the domains
- Potential solution space implicitly defined by Cartesian product of variable domains (very coarse relaxation)
- We can communicate more information between constraint using MDDs [Andersen et al. 2007]
- Explicit representation of more refined potential solution space (can still be exponentially large)
- Limited width defines *relaxation* MDD
- Strength is controlled by the imposed width

MDD-based Constraint Programming

- Maintain limited-width MDD
 - Serves as relaxation
 - Typically start with width 1 (initial variable domains)
 - Dynamically adjust MDD, based on constraints
- Constraint Propagation
 - Edge filtering: Remove provably inconsistent edges (those that do not participate in any solution)
 - Node refinement: Split nodes to separate edge information
- Search
 - As in classical CP, but may now be guided by MDD

Specific MDD propagation algorithms

- Linear equalities and inequalities
- *Alldifferent* constraints
- Element constraints
- Among constraints
- Disjunctive scheduling constraints [Hoda et al., 2010]
- Sequence constraints (combination of Amongs) [V.H., 2011]
- Generic re-application of existing domain filtering algorithm for any constraint type [Hoda et al., 2010]
- 8

[Hadzic et al., 2008] [Hoda et al., 2010]

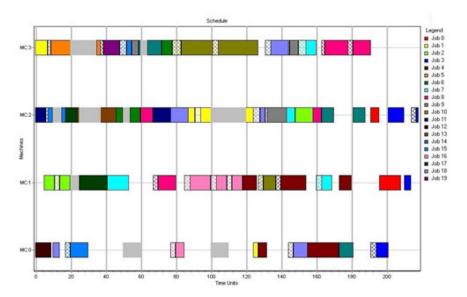
[Andersen et al., 2007]

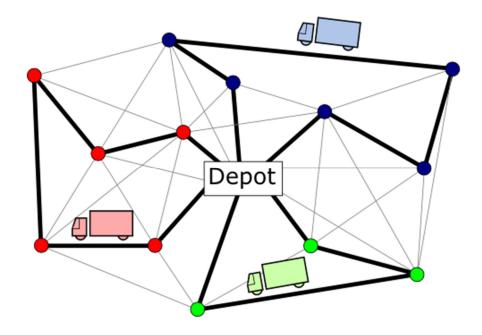
[Hoda et al., 2010]

[Hoda et al., 2010]

[Cire & v.H., 2012]

Disjunctive Scheduling





Constraint-Based Scheduling

- Disjunctive scheduling may be viewed as the 'killer application' for CP
 - Natural modeling (activities and resources)
 - Allows many side constraints (precedence relations, time windows, setup times, etc.)
 - State of the art while being generic methodology
- However, CP has some problems when
 - objective is not minimize makespan (but instead, e.g., weighted sum)
 - setup times are present

— ...

• What can MDDs bring here?

Disjunctive Scheduling

- Sequencing and scheduling of activities on a resource
- Activities
 Processing time: p_i
 Release time: r_i
 Deadline: d_i
 Activity 2
 Activity 3
- Resource
 - Nonpreemptive
 - Process one activity at a time

Common Side Constraints

- Precedence relations between activities
- Sequence-dependent setup times
- Induced by objective function
 - Makespan
 - Sum of setup times
 - Sum of completion times
 - Tardiness / number of late jobs

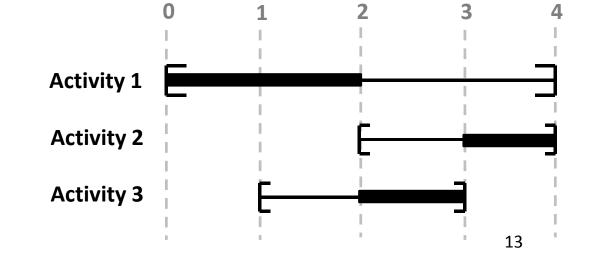
— ...

Inference

- Inference for disjunctive scheduling
 - Precedence relations
 - Time intervals that an activity can be processed
- Sophisticated techniques include:

 $s_3 \ge 3$

- Edge-Finding
- Not-first / not-last rules



MDD Representation

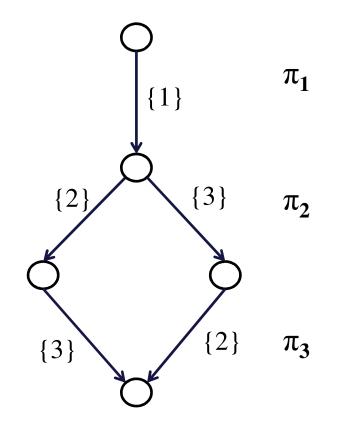
- Natural representation as 'permutation MDD'
- Every solution can be written as a permutation *π*

 $\pi_1, \pi_2, \pi_3, ..., \pi_n$: activity sequencing in the resource

• Schedule is *implied* by a sequence, e.g.:

$$start_{\pi_{i}} \ge start_{\pi_{i-1}} + p_{\pi_{i-1}} \quad i = 2, ..., n$$

MDD Representation



Act	r _i	d _i	p _i
1	0	3	2
2	4	9	2
3	3	8	3

Path $\{1\} - \{3\} - \{2\}$: $0 \le \text{start}_1 \le 1$ $6 \le \text{start}_2 \le 7$ $3 \le \text{start}_3 \le 5$

Theorem: *Constructing the exact MDD for a Disjunctive Instance is an NP-Hard problem*

Nevertheless, there are interesting restrictions, e.g. (Balas [99]):

- TSP defined on a complete graph
- Given a fixed parameter **k**, we must satisfy

 $i \ll j$ if $j - i \ge k$ for cities i, j

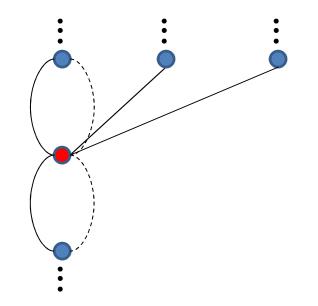
Lemma: The exact MDD for the TSP above has $O(n2^k)$ nodes

We can apply several propagation algorithms to the relaxed MDD

- *Alldifferent* for the permutation structure
- Earliest start time / latest end time
- Precedence relations

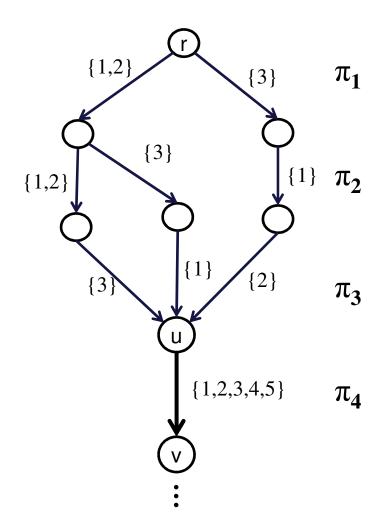
Constraint Representation in MDDs

- For a given constraint type we maintain specific 'state information' at each node in the MDD
- Computed from incoming arcs (both from top and from bottom)
- State information is basis for MDD *filtering* and for MDD *refinement*



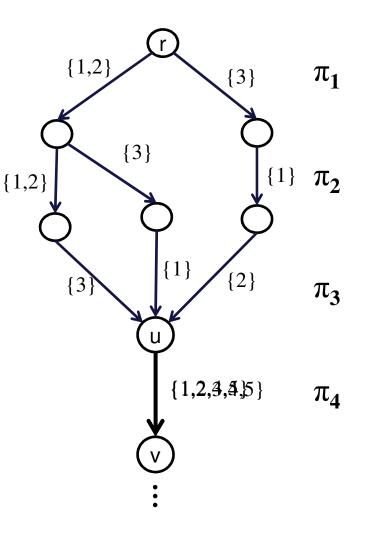
Propagation for disjunctive

- State information at each node *i*
 - labels on *all* paths: A_i
 - labels on *some* paths: S_i
 - earliest starting time: E_i
 - latest completion time: L_i
- Top down example for arc (u,v)



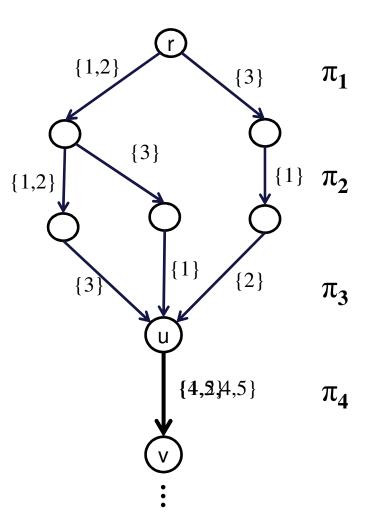
Alldifferent Propagation

- All-paths state: A_u
 - Labels belonging to all paths from node r to node u
 - ► A_u = {3}
 - Thus eliminate {3} from (u,v)



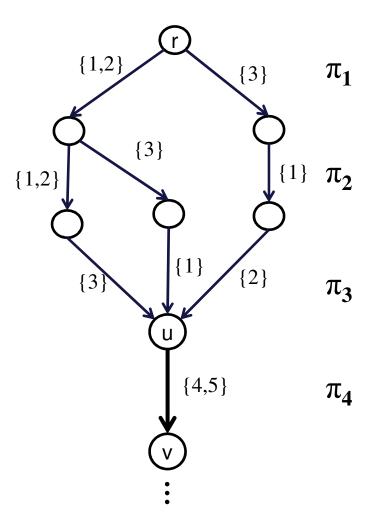
Alldifferent Propagation

- Some-paths state: S_u
 - Labels belonging to some path from node r to node u
 - ► S_u = {1,2,3}
 - Identification of Hall sets
 - Thus eliminate {1,2,3} from (u,v)



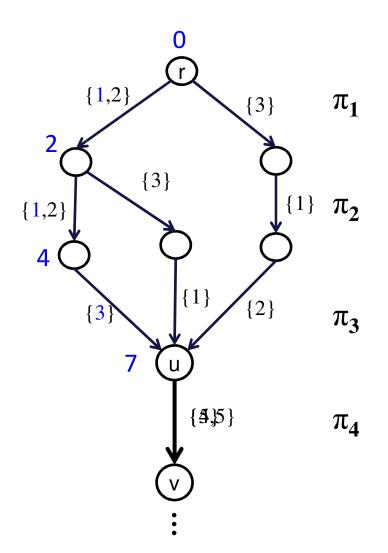
Propagate Earliest Completion Time

- Earliest Completion Time: E_u
 - Minimum completion time of all paths from root to node u
- Similarly: Latest Completion Time



Propagate Earliest Completion Time

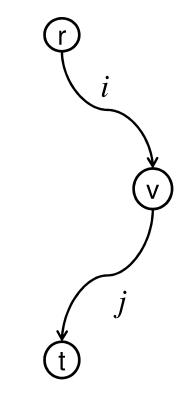
Act	r _i	d _i	p _i	
1	0	3	2	
2	3	7	3	
3	1	8	3	
4	5	6	1	
5	2	10	3	



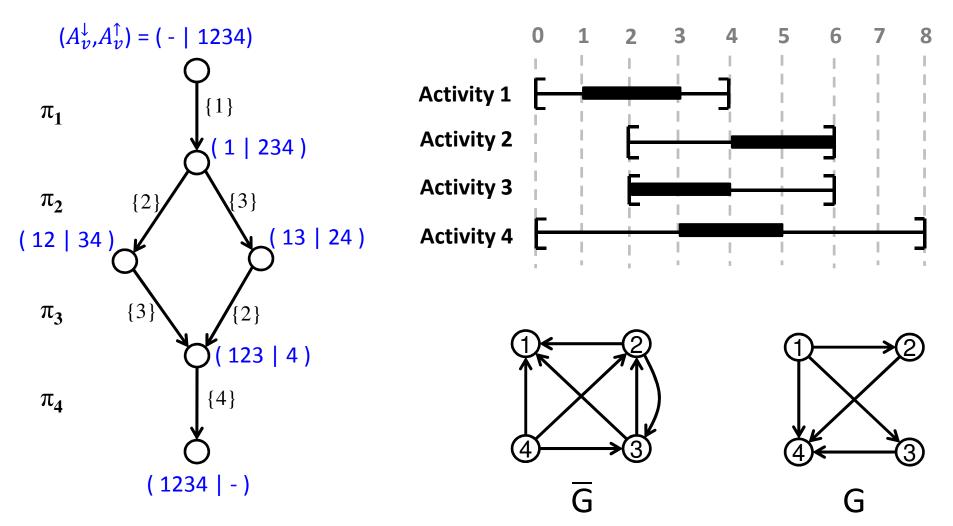
- ► E_u = 7
- Eliminate 4 from (u,v)

Theorem: Given the exact MDD M, we can deduce all implied activity precedences in polynomial time in the size of M

- For a node *u*,
 - A_u^{\downarrow} : values in all paths from root to *u*
 - A_u^{\uparrow} : values in all paths from node u to terminal
- Precedence relation $i \ll j$ holds if and only if $(j \notin A_u^{\downarrow})$ or $(i \notin A_u^{\uparrow})$ for all nodes u in M
- Same technique applies to relaxed MDD: use S_u^{\downarrow} and S_u^{\uparrow}



Precedence relations: example



Arc (*i*,*j*) in \overline{G} if $j \in A_u^{\downarrow}$ and $i \in A_u^{\uparrow}$ for *some* node *u* in *M*

 $O(n^2|M|)$ time

25

Communicate Precedence Relations

- 1. Provide precedence relations from MDD to CP
 - update start/end time variables
 - other inference techniques may utilize them

2. Filter the MDD using precedence relations from other (CP) techniques

MDD Refinement

- For refinement, we generally want to identify equivalence classes among nodes in a layer
- Theorem:

Let M represent a Disjunctive Instance. Deciding if two nodes u and v in M are equivalent is NP-hard.

- In practice, refinement can be based on
 - earliest starting time
 - latest earliest completion time r_i+p_i
 - *alldifferent* constraint (A_i and S_i states)

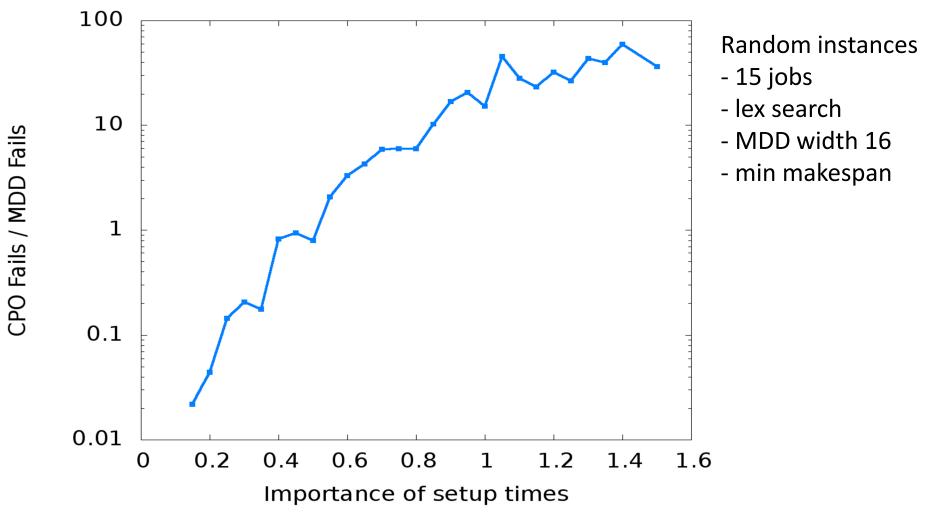
Experiments

- MDD propagation implemented in IBM ILOG CPLEX CP Optimizer 12.4 (CPO)
 - State-of-the-art constraint based scheduling solver
 - Uses a portfolio of inference techniques and LP relaxation
- Main purpose of experiments
 - When can MDDs strengthen CP
 - Compare stand-alone MDD versus CP
 - Compare CP versus CP+MDD (most practical)

Problem classes

- Disjunctive instances with
 - Sequence-dependent setup times
 - Release dates and deadlines
 - Precedence relations
- Objectives (that are presented here)
 - Minimize makespan
 - Minimize sum of setup times
- Benchmarks
 - Random instances with varying setup times
 - TSP-TW instances (Dumas, Ascheuer, Gendreau)
 - Sequential Ordering Problem

Test 1: Importance of setup times



Test 2: Minimize Makespan

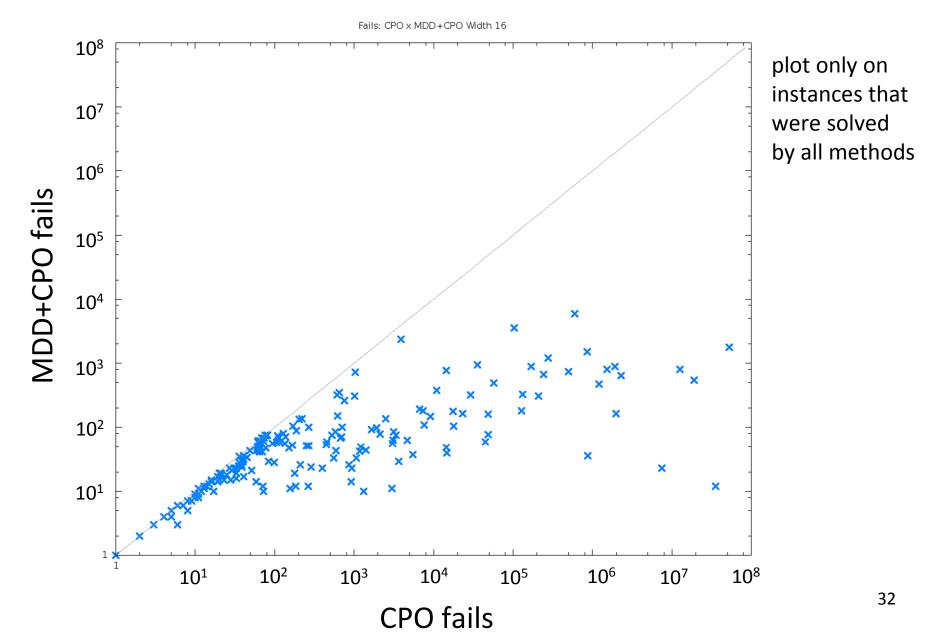
- 229 TSPTW instances with up to 100 jobs
- Minimize makespan
- Time limit 7,200s
- Max MDD width is 16

instances solved by CP: 211

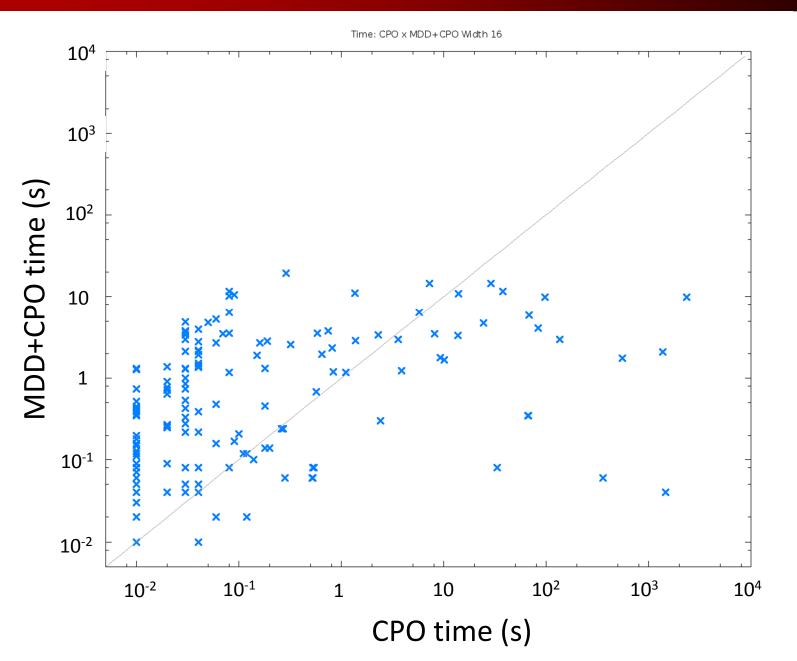
instances solved by pure MDD: 216

instances solved by CP+MDD: 225

Minimize Makespan: Fails



Minimize Makespan: Time

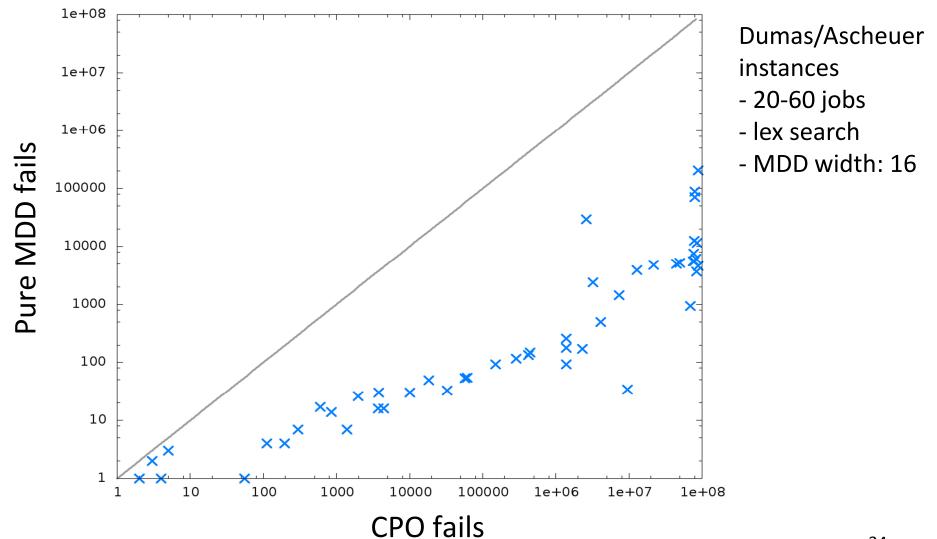


33

Carnegie Mellon

SCHOOL OF BUSINES

Min sum of setup times: Fails



Min sum of setup times: Time

10000 Dumas/Ascheuer instances 1000 - 20-60 jobs Pure MDD time (s) - lex search × × - MDD width: 16 100 × × × 10 × × × × × ×× X 1 × ×× × × 0.1 × × × ×× × ××× 0.01 0.01 0.1 10 1 100 1000 10000 CPO time (s) 35

		СРО		CPO+MDD	
Instance	Cities	Backtracks	Time (s)	Backtracks	Time (s)
n40w40.004	40	480,970	50.81	18	0.06
n60w20.001	60	908,606	199.26	50	0.22
n60w20.002	60	84,074	14.13	46	0.16
n60w20.003	60	> 22,296,012	> 3600	99	0.32
n60w20.004	60	2,685,255	408.34	97	0.24

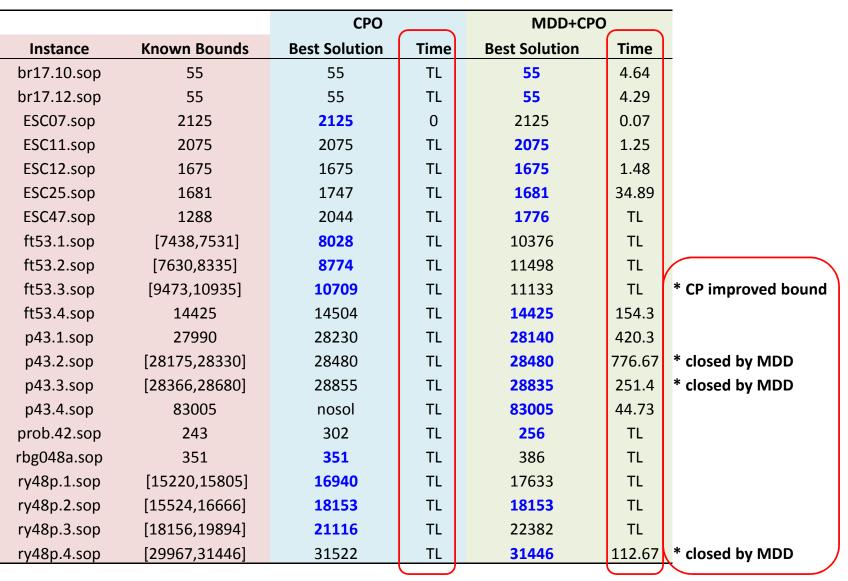
minimize sum of setup times

MDDs have maximum width 16

Sequential Ordering Problem

- TSP with precedence constraints (no time windows)
- Instances up to 53 jobs
- Time limit 1,800s
- CPO: default search
- MDD+CPO: search guided by MDD (shortest path)
- Max MDD width 2,048

Sequential Ordering Problem Results



Carnegie Mellon

SCHOOL OF BUSINESS

Summary

- MDDs can provide substantial advantage over traditional domains for constraint propagation
 - Strength of MDD can be controlled by the width
 - Huge reduction in the amount of backtracking and solution time is possible