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Decision Diagrams

• Binary Decision Diagrams were introduced to compactly 

represent Boolean functions [Lee, 1959], [Akers, 1978], [Bryant, 1986]

• BDD: merge isomorphic subtrees of a given binary decision tree

• MDDs are multi-valued decision diagrams (i.e., for discrete 

variables)
3

f(x1, x2, x3) = -x1 * -x2 * -x3 + x1 * x1 * x2 + x2 * x3
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Motivation

Constraint Programming applies 

• systematic search and 

• inference techniques 

to solve combinatorial problems

Inference mainly takes place through:

• Filtering provably inconsistent values from variable domains

• Propagating the updated domains to other constraints

x1 < x2 

x1 ∈ {1,2}, x2 ∈ {1,2,3}, x3 ∈ {2,3}

alldifferent(x1,x2,x3)

x2 ∈ {2,3}

x1 ∈ {1}
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Illustrative Example

AllEqual(x1, x2,…, xn),  all xi binary

x2

xn-1

xn

x1
{0,1}

{0,1}

domain representation, size 2n

{0,1}

{0,1}

x1 + x2 + … + xn ≥ n/2

{1}

{0}

{0}

{0}

{0}

{1}

{1}

{1}

MDD representation, size 2
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Drawback of domain propagation

• All structural relationships among variables are 

projected onto the domains

• Potential solution space implicitly defined by Cartesian 

product of variable domains (very coarse relaxation)

We can communicate more information between 

constraint using MDDs [Andersen et al. 2007]

• Explicit representation of more refined potential 

solution space (can still be exponentially large)

• Limited width defines relaxation MDD

• Strength is controlled by the imposed width
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MDD-based Constraint Programming

• Maintain limited-width MDD

– Serves as relaxation

– Typically start with width 1 (initial variable domains)

– Dynamically adjust MDD, based on constraints

• Constraint Propagation

– Edge filtering: Remove provably inconsistent edges (those 

that do not participate in any solution)

– Node refinement: Split nodes to separate edge information

• Search

– As in classical CP, but may now be guided by MDD



Specific MDD propagation algorithms

• Linear equalities and inequalities [Hadzic et al., 2008] 

[Hoda et al., 2010]

• Alldifferent constraints [Andersen et al., 2007]

• Element constraints [Hoda et al., 2010]

• Among constraints [Hoda et al., 2010]

• Disjunctive scheduling constraints [Hoda et al., 2010]

[Cire & v.H., 2012]

• Sequence constraints (combination of Amongs)
[v.H., 2011]

• Generic re-application of existing domain filtering 

algorithm for any constraint type [Hoda et al., 2010]
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Disjunctive Scheduling
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Constraint-Based Scheduling

• Disjunctive scheduling may be viewed as the ‘killer 

application’ for CP

– Natural modeling (activities and resources)

– Allows many side constraints (precedence relations, time 

windows, setup times, etc.)

– State of the art while being generic methodology

• However, CP has some problems when

– objective is not minimize makespan (but instead, e.g., 

weighted sum)

– setup times are present

– … 

• What can MDDs bring here?
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Disjunctive Scheduling

• Sequencing and scheduling of activities on a resource

• Activities

– Processing time: pi

– Release time: ri

– Deadline: di

– Start time variable: si

• Resource

– Nonpreemptive

– Process one activity at a time

Activity 1

Activity 2

Activity 3

0 1 2 3 4
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Common Side Constraints

• Precedence relations between activities

• Sequence-dependent setup times

• Induced by objective function

– Makespan

– Sum of setup times

– Sum of completion times

– Tardiness / number of late jobs

– …
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Inference

• Inference for disjunctive scheduling

– Precedence relations

– Time intervals that an activity can be processed

• Sophisticated techniques include:

– Edge-Finding

– Not-first / not-last rules

• Examples:   1 ≪ 3

s3 ≥ 3
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Activity 1

Activity 2

Activity 3

0 1 2 3 4



MDD Representation

• Natural representation as ‘permutation MDD’

• Every solution can be written as a 

permutation π

π1, π2 , π3, …, πn :  activity sequencing in the resource

• Schedule is implied by a sequence, e.g.:

������� 		 �������
� � ��
� 							� � 2,… , �
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π
1

π
2

π
3

{2}

{1}

{3}

{3} {2}

Path {1} – {3} – {2} : 

0 ≤ start1  ≤ 1

6 ≤ start2  ≤ 7

3 ≤ start3  ≤ 5
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MDD Representation

Act ri di pi

1 0 3 2

2 4 9 2

3 3 8 3



Exact MDD Compilation

Theorem: Constructing the exact MDD for a Disjunctive 

Instance is an NP-Hard problem

Nevertheless, there are interesting restrictions, e.g. (Balas [99]):

� TSP defined on a complete graph

� Given a fixed parameter k, we must satisfy

� ≪ � if   � � � 	 � for cities i, j 

Lemma:  The exact MDD for the TSP above has O(n2k) nodes



Relaxed MDD Propagation

We can apply several propagation algorithms to the 

relaxed MDD

• Alldifferent for the permutation structure

• Earliest start time / latest end time

• Precedence relations
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Constraint Representation in MDDs

• For a given constraint type we maintain specific ‘state 

information’ at each node in the MDD

• Computed from incoming arcs (both from top and 

from bottom)

• State information is basis for MDD filtering and for 

MDD refinement
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Propagation for disjunctive

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

{1,2,3,4,5}

• State information at 

each node i

– labels on all paths: Ai

– labels on some paths: Si

– earliest starting time: Ei

– latest completion time: Li

• Top down example for 

arc (u,v)

π
1

π
2

π
3

π
4

…
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Alldifferent Propagation

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

{1,2,4,5}

� All-paths state:  Au

� Labels belonging to all paths 

from node r to node u

� Au = {3}

� Thus eliminate {3} from (u,v)

{1,2,3,4,5}

π
1

π
2

π
3

π
4

…

20[Andersen et al., 2007]



Alldifferent Propagation

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

{4,5}

� Some-paths state:  Su

� Labels belonging to some

path from node r to node u

� Su = {1,2,3}

� Identification of Hall sets

� Thus eliminate {1,2,3} from 

(u,v)
{1,2,4,5}

π
1

π
2

π
3

π
4

…
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Propagate Earliest Completion Time

π
1

π
2

π
3

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

{4,5} π
4

� Earliest Completion Time:  Eu

� Minimum completion time 

of all paths from root to 

node u

� Similarly: Latest Completion 
Time

…
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Propagate Earliest Completion Time

π
1

π
2

π
3

u

r
{1,2}

{1,2}

v

{3}

{1}
{3}

{3}

{1}

{2}

{4,5} π
4� Eu = 7

� Eliminate 4 from (u,v)

{5}

…
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Act ri di pi

1 0 3 2

2 3 7 3

3 1 8 3

4 5 6 1

5 2 10 3

Act ri di pi

1 0 3 2

2 3 7 3

3 1 8 3

4 5 6 1

5 2 10 3



More MDD Inference

Theorem: Given the exact MDD M,  we can deduce all implied 

activity precedences in polynomial time in the size of M

r

v

t

i

j

� For a node u,

� ��
↓ : values in all paths from root to u

� ��
↑ : values in all paths from node u to terminal

� Precedence relation � ≪ � holds if and only if

for all nodes u in M

� Same technique applies to relaxed MDD:

use ��
↓ and ��

↑
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Precedence relations: example
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Activity 1

Activity 2

Activity 3

0 2 4 6 81 3 5 7

Activity 4

π
1

π
2

π
3

{3}

{3}

{1}

{2}

π
4

{2}

{4}

(��
↓ ,��

↑ ) = ( - | 1234)

( 1 | 234 )

( 13 | 24 )( 12 | 34 )

( 123 | 4 )

( 1234 | - )

O(n2|M|) time

1 2

4 3

G

1 2

4 3

G

Arc (i,j) in G if

for some node u in M

and



Communicate Precedence Relations

1. Provide precedence relations from MDD to CP

– update start/end time variables

– other inference techniques may utilize them

2. Filter the MDD using precedence relations from 

other (CP) techniques
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MDD Refinement

• For refinement, we generally want to identify 

equivalence classes among nodes in a layer

• Theorem:

Let M represent a Disjunctive Instance. Deciding if two nodes 

u and v in M are equivalent is NP-hard.

• In practice, refinement can be based on

– earliest starting time

– latest earliest completion time ri+pi

– alldifferent constraint (Ai and Si states)
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Experiments

• MDD propagation implemented in IBM ILOG CPLEX 

CP Optimizer 12.4 (CPO)

– State-of-the-art constraint based scheduling solver

– Uses a portfolio of inference techniques and LP relaxation

• Main purpose of experiments

– When can MDDs strengthen CP

– Compare stand-alone MDD versus CP

– Compare CP versus CP+MDD (most practical)
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Problem classes

• Disjunctive instances with 

– Sequence-dependent setup times

– Release dates and deadlines

– Precedence relations

• Objectives (that are presented here)

– Minimize makespan

– Minimize sum of setup times

• Benchmarks

– Random instances with varying setup times

– TSP-TW instances (Dumas, Ascheuer, Gendreau)

– Sequential Ordering Problem
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Test 1: Importance of setup times

Random instances

- 15 jobs

- lex search

- MDD width 16

- min makespan
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Test 2: Minimize Makespan

• 229 TSPTW instances with up to 100 jobs

• Minimize makespan

• Time limit 7,200s

• Max MDD width is 16

# instances solved by CP: 211

# instances solved by pure MDD: 216

# instances solved by CP+MDD: 225
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Minimize Makespan: Fails
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CPO fails
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Minimize Makespan: Time
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CPO time (s)
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Min sum of setup times: Fails

Dumas/Ascheuer

instances

- 20-60 jobs

- lex search

- MDD width: 16
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Min sum of setup times: Time
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Dumas/Ascheuer

instances

- 20-60 jobs

- lex search

- MDD width: 16
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Instances Dumas (TSPTW)

CPO CPO+MDD

Instance Cities Backtracks Time (s) Backtracks Time (s)

n40w40.004 40 480,970 50.81 18 0.06

n60w20.001 60 908,606 199.26 50 0.22

n60w20.002 60 84,074 14.13 46 0.16

n60w20.003 60 > 22,296,012 > 3600 99 0.32

n60w20.004 60 2,685,255 408.34 97 0.24

MDDs have maximum width 16minimize sum of setup times 
36



Sequential Ordering Problem

• TSP with precedence constraints (no time windows)

• Instances up to 53 jobs

• Time limit 1,800s

• CPO: default search

• MDD+CPO: search guided by MDD (shortest path)

• Max MDD width 2,048
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CPO MDD+CPO

Instance Known Bounds Best Solution Time Best Solution Time

br17.10.sop 55 55 TL 55 4.64

br17.12.sop 55 55 TL 55 4.29

ESC07.sop 2125 2125 0 2125 0.07

ESC11.sop 2075 2075 TL 2075 1.25

ESC12.sop 1675 1675 TL 1675 1.48

ESC25.sop 1681 1747 TL 1681 34.89

ESC47.sop 1288 2044 TL 1776 TL

ft53.1.sop [7438,7531] 8028 TL 10376 TL

ft53.2.sop [7630,8335] 8774 TL 11498 TL

ft53.3.sop [9473,10935] 10709 TL 11133 TL * CP improved bound

ft53.4.sop 14425 14504 TL 14425 154.3

p43.1.sop 27990 28230 TL 28140 420.3

p43.2.sop [28175,28330] 28480 TL 28480 776.67 * closed by MDD

p43.3.sop [28366,28680] 28855 TL 28835 251.4 * closed by MDD

p43.4.sop 83005 nosol TL 83005 44.73

prob.42.sop 243 302 TL 256 TL

rbg048a.sop 351 351 TL 386 TL

ry48p.1.sop [15220,15805] 16940 TL 17633 TL

ry48p.2.sop [15524,16666] 18153 TL 18153 TL

ry48p.3.sop [18156,19894] 21116 TL 22382 TL

ry48p.4.sop [29967,31446] 31522 TL 31446 112.67 * closed by MDD

Sequential Ordering Problem Results
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Summary

• MDDs can provide substantial advantage over 

traditional domains for constraint propagation

– Strength of MDD can be controlled by the width

– Huge reduction in the amount of backtracking and solution 

time is possible


