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introduce a novel single-level reformulation of these programs by leveraging
a network flow-based representation of the follower’s value function, utilizing
decision diagrams and linear programming duality. This approach enables the
development of scalable relaxations by applying it to a restricted solution set,
which in turn provides dual bounds. We obtain an exact method by itera-
tively solving and strengthening the relaxation. We further extend the refor-
mulation to address the pessimistic version of the original bilevel problem. We
experimentally compare our method with state-of-the-art bilevel programming
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that the decision diagram reformulation can be particularly effective when it
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1 Introduction

Bilevel optimization problems naturally arise when two players, a leader and a
follower, interact and aim to optimize their separate objective functions subject
to joint as well as separate constraints [9]. It is assumed that there is no private
information; the entire model is visible to both the leader and the follower.
However, the leader only controls its own decisions, and the follower will opti-
mize its decisions based on the leader’s decisions. When the follower has mul-
tiple optimal responses to the leader’s solution, the optimistic setting assumes
that the follower’s response benefits the leader, while the pessimistic setting
assumes that the follower’s response disfavors the leader. The goal is to find
a solution that optimizes the leader’s objective. Bilevel optimization problems
have many important practical applications, including transportation network
design [33,27], management science [2], supply chain management [16], and
finance [26]. Many such problems contain integer decisions; a well-known spe-
cial case are network interdiction problems for which the leader and follower
decisions are all binary [35]. Additional applications of bilevel programming
are discussed in [3,15,25,5].
For continuous bilevel programs, single-level reformulations can be derived
using strong duality or the Karush-Kuhn-Tucker (KKT) conditions, leading
to nonlinear programs or mathematical programs with complementarity con-
straints [20,4,43]. However, these techniques cannot be directly applied to the
integer case, making it more challenging to reformulate and solve. Current
state-of-the-art exact solvers extend mixed-integer programming techniques,
either by using known integer programming valid cuts [17,18,19,36] or by sam-
pling and enumerating solutions [31,29,30]. For most of these approaches, a
key challenge is repeatedly evaluating the follower’s response, which typically
requires solving a separate integer program.
In this work, we introduce a new single-level linear reformulation for integer
bilevel programming problems using decision diagrams, which encodes the fol-
lower’s solution space as a directed acyclic graph. This approach eliminates the
need to repeatedly solve the follower’s response. It comes at a price however,
as the exact reformulation may grow to an exponential size. To address this,
we introduce a polynomial-sized decision diagram relaxation that provides a
dual bound. Stronger bounds can be achieved with larger diagrams, allowing
for a trade-off between computational time and bound quality.

Contributions Our first contribution is a new single-level linear reformu-
lation for integer bilevel programming problems. It replaces the well-known
value function representation for the follower’s problem by a reformulation
that encodes all solutions to the follower’s problem in a decision diagram. The
reformulation consists of a network flow model defined over the decision di-
agram, with capacity constraints parameterized by the leader’s solution, and
new variables and constraints derived from linear programming duality to en-
sure the follower selects an optimal solution. Combined with the original leader
problem formulation, this results in an exact reformulation. When the decision
diagram size is small enough, the reformulation can be directly solved within
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reasonable time. Our second contribution is the development of dual bounds
based on polynomial-sized restricted decision diagrams. Standard decision di-
agram relaxations do not yield valid bounds for bilevel programs. However,
we show that valid dual bounds can be obtained by using restricted decision
diagrams that include only a subset of the follower’s decisions. In addition, we
can iteratively strengthen this formulation to obtain an exact solution method.
As our third contribution, we extend our approach to the pessimistic version
of the bilevel program, showing that the reformulation can be adapted to this
variant, resulting in a strengthened relaxation. Lastly, our fourth contribu-
tion is an experimental comparison with state-of-the-art mixed-integer bilevel
programming solvers, where we achieve competitive results for certain prob-
lem classes and outperform existing solvers on instances where the follower’s
problem has a combinatorial structure suitable for decision diagrams.

We note three closely related approaches leveraging decision diagrams for
bilevel optimization. The first one, proposed in [29], considers bilevel inter-
diction problems, in which both the leader variables x and the follower vari-
ables y are binary, and the follower problem constraints are of the specific
form x ď 1´ y. The authors provide a single-level reformulation of the bilevel
problem using exact decision diagrams and exploiting the special structure of
the follower’s constraints. We use a similar technique and extend it to a much
more general setting while also constructing relaxations and considering the
pessimistic version of the problem. The second one, presented in [30], focuses
on general linear binary bilevel programs, and uses decision diagrams to rep-
resent leader’s decisions associated with the same follower’s problem optimal
value. To the best of our knowledge, this is the only single-level reformulation
for general linear binary bilevel programs available in the literature. This work
is related to ours in the sense that both approaches seek to provide single-level
reformulations and relaxations of the original bilevel problem. However, our
approach is based on constructing parametric decision diagrams that serve as
convexification devices for the follower problem, allowing us to exploit duality
arguments, while their approach is based on enumerative and combinatorial
arguments resulting in considerably different reformulations. The third one,
introduced by [11], leverages decision diagrams to model a pricing problem
in which the leader maximizes a revenue function by setting tolls on items,
resulting in modified prices perceived by a follower aiming to minimize a cost
function. Here, the decision diagram encodes the follower’s feasible decisions
for fixed tolls. This approach is similar to ours since both rely on restricted
decision diagrams to approximate the follower problem. However, the problem
setting, the construction of the decision diagrams, and the resulting reformu-
lations are widely different.

Organization The remainder of this work is organized as follows. Section 2
introduces the definitions and relevant notation. Section 3 presents our single-
level reformulation and explains how to use decision diagrams to model the
follower’s value function. Section 4 shows a procedure to generate valid dual
bounds through approximate decision diagrams. It also describes an iterative
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compilation procedure that yields an exact method. Section 5 explains how
to contract decision diagram layers to achieve smaller reformulations. Section
6 extends our reformulation to address the pessimistic version of the original
bilevel program. Section 8 presents numerical results and a comparison of our
reformulation with state-of-the-art solvers. Finally, we provide a conclusion in
Section 9.

2 Integer Bilevel Programming Definitions

In this section we first provide the definition of integer linear bilevel program-
ming problems. We then introduce the high-point relaxation and the value-
function reformulation. We conclude this section with a binary expansion of
the integer model, which will be used for our decision diagram construction.

2.1 Integer Linear Bilevel Programming Problem

We consider integer linear bilevel programming problems of the following form.
Let x P ZnL and y P ZnF be the leader’s and the follower’s decision variables,
respectively, where nL P N` and nF P N` are given constants. Let mL P N`

and mF P N` respectively denote the number of constraints for the leader
and follower. We let cL P RnL , cF , d P RnF , a P RmL , b P RmF , A P RmLˆnL ,
C P RmF ˆnL , B P RmLˆnF , and D P RmF ˆnF . The canonical integer linear
bilevel programming problem is formulated as:

fpx, yq “ min cJ
Lx ` cJ

F y (1a)

s. t. Ax ` By ď a (1b)

x P ZnL (1c)

y P argmin
syPYpxq

␣

dJ
sy
(

, (1d)

where (1b) are called linking constraints, (1c) indicate integrality requirement
for the leader’s variables, and (1d) forces the follower to best respond with a
solution y solving the follower’s problem over its own domain given a vector
x, defined as

Ypxq :“ ty P ZnF : Dy ď b ´ Cxu .

As it is common in the literature, we define fpx, yq “ `8 if px, yq violates
constraints (1b), or Ypxq “ H. Any feasible solution to problem (1) is called
bilevel-feasible. Additionally, we denote as Yp¨q the set of feasible solutions
px, yq to the follower’s problem, i.e.,

Yp¨q “ tpx, yq P ZnL ˆZnF : Cx ` Dy ď bu .

Importantly, as the follower may have alternative optimal responses for a given
leader’s solution, the literature presents two ways of breaking ties: the opti-
mistic and the pessimistic setting. Under the optimistic setting, the follower’s
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response benefits the leader, i.e., it minimizes cJ
Lx`cJ

F y among alternative op-
timal follower solutions. Under the pessimistic setting, the follower’s response
disfavors the leader, i.e., it maximizes cJ

Lx`cJ
F y among alternative optimal fol-

lower solutions. Throughout this work we will consider the optimistic setting;
we discuss the extension to the pessimistic setting in Section 6.

2.2 High Point Relaxation

A natural relaxation of the set of feasible solutions to (1) is the High Point
Relaxation (HPR), which is obtained by removing the optimality condition for
the follower response [34]. Formally, it is defined as

H :“

"

px, yq P ZnL ˆZnF :
Ax ` By ď a,
Cx ` Dy ď b

*

,

noting that min
␣

cJ
Lx ` cJ

F y : px, yq P H
(

is a valid lower bound for prob-
lem (1). The HPR is embedded as the principal relaxation for state-of-the-art
mixed-integer bilevel programming solvers, often strengthened with additional
cuts [19,36,25].

2.3 Value Function Reformulation

The set containing all solutions feasible to problem (1) is called the bilevel-
feasible set, which can be represented as

#

px, yq P H : y P argmin
syPYpxq

␣

dJ
sy
(

+

.

This representation motivates the value function reformulation of model (1).
Given x satisfying (1b)-(1c), the value function ϕ : ZnL ÞÑ R is defined as

ϕpxq :“ min
␣

dJy : y P Ypxq
(

. (2)

Then, the value function reformulation of (1) is

min cJ
Lx ` cJ

F y (3a)

s. t. px, yq P H (3b)

dJy ď ϕpxq. (3c)

This description forms the basis of our work, as we will compute ϕ using a
decision diagram.



6 Vásquez et al.

min ´x ´ 2y
s. t. x ` y ď 5

0 ď x ď 4
x P Z
y P argmin

syPYpxq tsyu

a. BIP model

Yp¨q :“

$

’

’

’

&
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’

’

%

2y ď 4 ` x
y ě 2 ´ x
y ě ´6 ` 3x
0 ď y ď 3
px, yq P Z2

,
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/

.

/

/

/

-

b. Follower’s domain

min ´x ´ 2y
s. t. x ` y ď 5

0 ď x ď 4
x P Z
y P Ypxq

c. High Point Relaxation

Fig. 1: Example integer bilevel programming model (a), the follower’s feasible
set (b), and the associated HPR (c).
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x ` 2y
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y
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a. Yp¨q b. Intersection with leader’s domain

Fig. 2: The follower’s feasible set Yp¨q for the example model in Fig. 1. Green
points depict optimal follower’s responses given specific x values. The blue-
shaded polyhedron represents the leader’s domain.

Example 1 As a running example, consider the integer bilevel programming
problem in Fig. 1a with the follower’s feasible set Yp¨q in Fig. 1b. Fig. 2 depicts
the set Yp¨q, where green points denote parametric optimal responses by the
follower. Note that x “ 4 is a feasible leader’s decision, but infeasible to
the overall model because Yp4q “ H. Also, given x “ 3, the corresponding
follower’s optimal response is y “ 3. However, px, yq “ p3, 3q violates the
linking constraint x`y ď 5. Therefore, the leader cannot make decision x “ 3.
The set of bilevel-feasible solutions is tp0, 2q, p1, 1q, p2, 0qu and the optimal
solution to the overall model is px, yq “ p0, 2q, achieving an optimal value of
´4. On the other hand, the optimal solution to the HPR, depicted in Fig. 1(c),
is px, yq “ p2, 3q, with associated objective value ´8. [\

2.4 Binary Expansion

Because our representation requires all variables to be binary, we will make
the following assumptions in the remainder of the paper. First, we assume
that all integer variables have a bounded domain (which is reasonable for a
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computational method). We can then assume, without loss of generality, that
x P t0, 1unL and y P t0, 1unF in program (1). Namely, we can first apply a linear
transformation to make the bounds of each integer variable nonnegative. Then
we apply a standard binary expansion: Each integer variable z P tl, . . . , uu,
with 0 ă l ă u, is binarized by introducing tlogpu´lqu`1 new binary variables

z1
j and defining z “ l`

řtlogpu´lqu

j“0 2jz1
j . As a result, we focus henceforth in the

binary version of the problem and assume that x P t0, 1unL and y P t0, 1unF .

3 Exact Single Level Reformulation

We next describe how the value function ϕ can be computed using a decision
diagram, leading to an exact single-level reformulation of problem (1). Our
approach is based on three components: 1) a decision diagram to encode the
domain of ϕ, 2) an associated network flow formulation that connects the de-
cision diagram to the original problem, and 3) optimality conditions to enforce
an optimal follower’s response.

3.1 Decision Diagram Definitions

We follow the terminology from [8,29] to introduce decision diagrams. Given
a set of binary points X Ď t0, 1un, a binary decision diagram is a directed
acyclic graph D “ pN ,A, l, νq encoding every solution in X , where N is a

set of nodes, A Ă N ˆN a set of arcs, l P R|A| a vector of arc-costs, and
ν P t0, 1u|A| a vector of arc-values representing “decisions”. We define a “root
node” r P N and a “sink node” t P N . Node set N is partitioned into n ` 1
layers N 1, . . . ,Nn`1, where N 1 “ tru and Nn`1 “ ttu. Assuming a fixed
but arbitrary ordering of the binary points in X , we introduce a mapping
i : rns Ñ rns such that layer ℓ P rns is uniquely associated with index ipℓq P rns

representing the ipℓq-th component of a vector in X . Every arc a “ pu, vq P A
connects consecutive ascending layers, i.e., if u P N ℓ, then v P N ℓ`1. For
notational convenience, we defineAℓ Ă A as the set of arcs leaving layer ℓ P rns,
and ℓpaq as the layer from which arc a P A leaves. Arcs with value 0 are called
0-arcs and arcs with value 1 are called 1-arcs. For any node u P N , δ`puq and
δ´puq denote the subsets of A containing all arcs leaving and entering node u,
respectively.
A diagram D encodes X through r-t paths in the following way. An arc-
specified r-t path pa1, a2, . . . , anq in D encodes px “ pνa1

, νa2
, . . . , νan

q in X ,
and vice versa, where px follows the ordering induced by the diagram. Moreover,
if x has an associated cost vector c P Rn, then for every layer ℓ P rns and arc
a P Aℓ, we set la “ νacipℓq. This way, we obtain cJ

px “
ř

ℓPrns laℓ
, i.e., the

length of the path encoding px is equal to the cost of px. This implies that a
shortest r-t path in D corresponds to an optimal solution to minxPX

␣

cJx
(

.
To simplify notation, we will use ipaq to denote ipℓpaqq. Finally, a diagram D
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is called exact if it encodes every solution in X , it is called relaxed if it encodes
a superset of X , and it is called restricted if it encodes a subset of X .

The benefit of using decision diagrams for representing solutions is that equiv-
alent nodes, i.e., nodes with the same set of partial paths reaching the sink
node, can be merged. A decision diagram is called reduced if no two nodes
in the same layer are equivalent. An efficient procedure to make a given de-
cision diagram reduced is presented in [10]. Given a fixed variable ordering,
the procedure will find the unique reduced diagram of minimum size. Aside
from its efficiency for representing circuits and Boolean functions [28,1,10,41],
decision diagrams have proven beneficial in discrete optimization for design-
ing cut generation/separation algorithms [39,12], generating bounds [40,21,6],
and modeling/solving combinatorial problems [14,23,24,37]; see [8,13,22] and
the references therein.

3.2 Decision Diagram for the Value Function

To compute ϕpxq for any x P t0, 1unL , we define a decision diagram D “

pN ,A, l, νq with the following structure:

– It has nF `nL `1 layers split into two disjoint subsets: the follower layers
go from layer 1 to layer nF `1 and encode y values, while the leader layers
go from layer nF ` 2 to layer nF ` nL ` 1 and encode x values. Similarly,
we call any arc leaving a node in a follower layer a follower arc, and any
arc leaving a node in a leader layer a leader arc.

– The diagram encodes all vectors in Yp¨q.
– The arc-length vector l is defined as la “ dipaq ¨ νa for any follower arc a,

and la “ 0 for any leader arc a.
– We additionally impose capacity constraints on the arcs, similar to [32].

Follower arcs have infinite capacity, while leader 1-arcs and 0-arcs in layer
ℓ have capacity xipℓq and

`

1 ´ xipℓq

˘

, respectively.

Example 2 We continue Example 1. Fig. 3(a) shows a decision diagram encod-
ing all solutions for the follower’s feasible set Yp¨q. Fig. 3(b) shows the unique
reduced decision diagram representing the same solution set. [\

We let A0
Ă A and A1

Ă A be the set of leader 0-arcs and 1-arcs, respectively.
We next use D to compute the value function through a network flow model.
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Proposition 1 Consider px P t0, 1unL such that Yppxq ‰ H. We have

ϕppxq “ min
ÿ

aPA
lawa (4a)

s. t.
ÿ

aPδ`puq

wa ´
ÿ

aPδ´puq

wa “

$

’

&

’

%

1, if u “ r

´1, if u “ t

0, if u ‰ r, t

u P N (4b)

wa ď 1 ´ pxipaq a P A0 (4c)

wa ď pxipaq a P A1 (4d)

w P R|A|

` . (4e)

Proof By construction, there is a one-to-one correspondence between binary
points in Yp¨q and paths in the diagram, i.e., a flow vector pw corresponds to
exactly one pair ppx, pyq and vice versa. The length of the path represented by
flow vector pw is

ÿ

aPA
la pwa “ dJ

py, (5)

where py is the follower portion of the binary vector encoded by pw.
Since the diagram encodes all vectors in Yp¨q, then for a fixed vector px, con-
straints (4c) and (4d) ensure that the follower’s solutions represented by all
feasible paths exactly describe set Yppxq. As a result, for a shortest path rep-
resented by w˚ we have

ÿ

aPA
law

˚
a “ dJy˚ “ min

␣

dJy : y P Yppxq
(

“ ϕppxq, (6)

where y˚ is the follower’s portion of the binary vector encoded by w˚. [\

3.3 Single Level Reformulation

Because the optimal value of the linear program (4) corresponds to the value
function given a leader’s decision x P ZnL , we can create a single-level refor-
mulation of (1) using linear programming duality. The dual of (4) is:

max gppx, ξq (7a)

s. t. πu ´ πv ď luv pu, vq “ a P A z
`

A0
YA1

˘

(7b)

πu ´ πv ´ λuv ď luv pu, vq “ a P A0 (7c)

πu ´ πv ´ βuv ď luv pu, vq “ a P A1 (7d)

πt “ 0 (7e)

λ P R|A0|
` , β P R|A1|

` (7f)

ξ “ pπ, λ, βq, (7g)
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y1

x0

x1

0 1 0 1

0

p1
´

x
0

q

x1

0

x0

p1
´
x
0
q

p1
´
x
1 q

x1

2

p1
´
x 0

q

x0

p1
´
x
0 q

p1
´

x
1

q p1
´

x
1

q

x1

2

p1
´
x
0

q

x0

x1
x1

r

t

a. Decision diagram representing all vectors in Yp¨q b. Reduced decision diagram

Fig. 3: a) Decision diagram encoding solutions in Yp¨q for the example in Fig. 1,
using a binary expansion. Nodes with incoming black arcs are in follower layers,
while nodes with blue incoming arcs are in leader layers. Dashed arcs represent
0-arcs and solid arcs represent 1-arcs. Black arcs are follower arcs with arc-
costs as labels, and blue arcs are leader arcs with arc-capacities as labels. b)
The reduced decision diagram encoding the same solution set.

where
gpx, ξq “ πr ´

ÿ

aPA0

`

1 ´ xipaq

˘

λa ´
ÿ

aPA1

xipaqβa.

Moreover, we set πt “ 0 because the corresponding flow-balance constraint is
linearly dependent on the remaining constraints. Let P pDq denote the feasible
solution set of model (7). We can now reformulate problem (1) as

min cJ
Lx ` cJ

F y (8a)

s. t. px, yq P H (8b)

dJy ď gpx, ξq (8c)

ξ P P pDq. (8d)

Proposition 2 Model (8) is an exact single-level reformulation of the integer
bilevel program (1).

Proof We show that (8) is equivalent to model (3), which in turn is a well-
known exact single-level reformulation of the binary bilevel programming prob-
lem (1).

We first consider a feasible solution ppx, py, pξq to model (8) and show that ppx, pyq

is feasible to model (3). Constraints (3b) and (8b) are identical and thus ppx, pyq

satisfies (3b). By Proposition 1 and weak duality, we obtain

ϕppxq ě g
´

px, pξ
¯

.
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Therefore, constraint (8c) ensures that

dJ
py ď ϕppxq,

and thus ppx, pyq satisfies (3c). We conclude that ppx, pyq is feasible to model (3).
We now show that for any solution ppx, pyq feasible to model (3), there exists ξ
such that ppx, py, ξq is feasible to model (8). Let pw be the flow vector associated
with the unique path in the diagram encoding ppx, pyq. By construction, we have
that pw is feasible for model (4) and

ÿ

aPA
la pwa “ dJ

py.

Furthermore, constraint (3c) and Proposition 1 ensure that pw is an optimal
solution to model (4) with arc capacities induced by px, i.e.,

ÿ

aPA
la pwa “ ϕppxq.

Now, let ξ1 be an optimal solution to model (7). By definition, ξ1 satisfies (8d)
and, by strong duality, satisfies

ϕppxq “ gppx, ξ1q.

We conclude that ppx, py, ξ1q is feasible to model (8).
Because the objective functions for models (3) and (8) are the same, any
feasible solution to one of them can be transformed into a feasible solution to
the other with the same objective value. [\

Observe that constraint (8c) contains the bilinear terms xipaqλa and xipaqβa.
The following result shows how the constraint can be linearized.

Proposition 3 Constraint (8c) can be replaced with the following system

dJy ď πr, (9a)

λa ď Mxipaq a P A0, (9b)

βa ď M
`

1 ´ xipaq

˘

a P A1, (9c)

for a sufficiently large constant M .

Proof Since any feasible solution ppx, py, pξq to model (8) satisfies the KKT con-
ditions for model (4) through constraint (8c), it must satisfy complementary
slackness conditions.
Let pξ “ ppπ, pλ, pβq and pw be the flow vector associated with the unique path
in the diagram encoding ppx, pyq. By construction, we have that pw is feasible
for model (4). Now, consider an equivalent formulation of (4), in which the
capacity constraints (4c) and (4d) are alternatively written as:

wa ď K ´ Kxipaq a P A0 (10a)

wa ď Kxipaq a P A1 (10b)
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for some K ą 1. By complementary slackness, we have

`

K ´ Kpxipaq ´ pwa

˘

pλa “ 0 @a P A0 . (11)

We examine two cases. If pxipaq “ 1, then pwa “ 0 because of (10a), and (11) is

satisfied for any value of pλa. If pxipaq “ 0, then (11) becomes

pK ´ pwaq pλa “ 0 @a P A0,

which can only be satisfied when pλa “ 0 since K ą 1 and pwa ď 1. Hence, we
have

`

pxipaq “ 0
˘

ùñ

´

pλa “ 0
¯

@a P A0 . (12)

Following a similar argument, we obtain

`

pxipaq “ 1
˘

ùñ

´

pβa “ 0
¯

@a P A1 . (13)

A big-M formulation for (12) and (13) is given by

pλa ď Mpxipaq a P A0 (14a)

pβa ď M
`

1 ´ pxipaq

˘

a P A1, (14b)

for a sufficiently large M value. Moreover, (12) and (13) imply that

ÿ

aPA0

`

1 ´ pxipaq

˘

pλa “
ÿ

aPA1

pxipaq
pβa “ 0. (15)

Replacing the above in (8c) yields

ÿ

aPA
la pwa “ pπr. (16)

[\

Furthermore, we can determine a valid value M using the following proposi-
tion.

Proposition 4 A valid value M for (9b)-(9c) is given by M :“ θ ´ lJ sw,
where θ “ max

␣

dJy : px, yq P Yp¨q
(

and sw is a flow vector associated to a
shortest path in D.

Proof Consider a feasible solution ppx, py, pξq to model (8). We show that there
exists ξ “ pπ, λ, βq such that ppx, py, ξq is also feasible to model (8), and

λa ď M @a P A0,

βa ď M @a P A1,

for M :“ θ ´ lJ sw.
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We iteratively build a vector ξ1 “ pπ1, λ1, β1q. Let pw be the flow vector associ-
ated with the unique path in the diagram encoding ppx, pyq. Start by defining ξ1

such that

π1
r “ lJ pw,

π1
t “ 0,

π1
v “ max

pu,vqPδ´pvq

␣

π1
u ´ luv

(

@v P N ztr, tu

λ1 “ β1 “ 0.

Observe that, for any node u P NnF `1, we have lJ pw ´ π1
u ď M . Moreover,

for any r-t path with a length strictly lower than lJ pw, there exists an arc
a P A0

YA1 such that either pa P A0
^ pxipaq “ 1q or pa P A1

^ pxipaq “ 0q.

Otherwise, lJ pw would not be the shortest length induced by px, pξ would not be
an optimal solution to model (7) and, thus, ppx, py, pξq would not be feasible to
model (8). Now, for each such arc a, update the value of λ1

a to M if the first
condition is met, or the value of β1

a to M if the second one is met. Finally, for
each r-t path with a length strictly lower than lJ pw, identify the node v that
is closest to t for which there is an arc a P δ´pvq with λ1

a “ M or β1
a “ M ,

and update π1
k to 0 for all nodes k in the v-t path.

By construction, ξ1 is a feasible solution to model (7) and, as π1
r “ lJ pw, it is

also optimal for px. Thus, ppx, py, ξ1q is feasible for model (8). We conclude that
M “ θ ´ lJ sw is a valid value for (9b)-(9c). [\

We remark that from the proof of Proposition 4, one can compute θ by solving
a longest path problem over D, and one can also define more refined values for
M for sub-parts of the diagram, depending on the value of the shortest path
into the nodes in the last follower layer.

4 Dual Bounds from Restricted Decision Diagrams

Because an exact decision diagram to compute ϕmay grow exponentially large,
we next propose a more scalable approach that uses an approximate decision
diagram of polynomial size. Two types of approximate decision diagrams have
been proposed in the literature [7,8]. The first are relaxed decision diagrams
that encode a superset of a given set of solutions. The relaxation is obtained
by merging nodes in the diagram that are not necessarily equivalent, inducing
possibly infeasible r-t paths. The second are restricted decision diagrams that
encode a subset of feasible solutions. Restricted diagrams can be obtained by
discarding nodes (and the associated arcs) from the diagram. In both cases,
the approximate diagrams are typically obtained by merging/discarding nodes
until each layer contains at most a given maximum number of nodes, referred
to as the decision diagram width.
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r

t

y0

y1

x0

x1

r

t

a. Relaxed diagram b. Restricted diagram

Fig. 4: Examples of approximate decision diagrams when forcing the width of
the compiled diagram to be at most 3. a) A relaxed decision diagram for the
running example. b) a restricted decision diagram for the running example.

4.1 Obtaining a Dual Bound

For standard optimization problems, optimizing over a relaxed decision dia-
gram provides a dual bound, while a restricted decision diagram provides a pri-
mal bound. For bilevel optimization problems, however, relaxing the follower’s
problem does not yield a valid lower bound because of the bilevel structure (in
the same way as relaxing the follower’s integrality constraints does not pro-
duce a valid relaxation [34]). Instead, restricted decision diagrams will help us
achieve valid dual bounds. This is illustrated in the following example.

Example 3 We continue Example 2. Figure 4 illustrates two approximate de-
cision diagrams for the running example by imposing the width of the com-
piled diagram to be at most 3. Figure 4a shows a relaxed decision diagram in
which now y “ 0 becomes a possible follower reaction to the leader’s decisions
x P t0, 1u. This modification implies that the optimal solution to model (8)
now becomes px, yq “ p2, 0q, with an optimal value of -2, which is not a valid
lower bound. Figure 4b depicts a restricted decision diagram in which now
solutions px, yq P tp1, 1q, p2, 1qu are not encoded. As a result, the new optimal
solution to model (8) corresponds to px, yq “ p1, 2q, with an optimal value
of -5, which is a valid lower bound. [\

The purpose of the approximate decision diagram is to encode upper bounds
on the value function ϕpxq for a subset of possible leader solutions x. Indeed,
any restricted diagram that encodes a subset of r-t paths fulfills this purpose:
For the leader solutions x that are encoded, the restriction will provide an
upper bound on ϕpxq, as not all follower responses to x may be encoded.
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Furthermore, for leader solutions that are not encoded we will not enforce an
upper bound on the corresponding value function.
Formally, let DR denote a restricted diagram induced by pN R,AR

q, where
N R

Ď N and AR
Ď A. Furthermore, let AR0 and AR1 be the leader 0-arcs and

1-arcs in AR, respectively. The following proposition states how to obtain dual
bounds for the optimal value of problem 1 by compiling smaller restricted

decision diagrams, where P
´

DR
¯

is defined exactly as P pDq but over the

restricted decision diagram DR instead of an exact decision diagram D.

Proposition 5 The optimal value of

min cJ
Lx ` cJ

F y (17a)

s. t. px, yq P H (17b)

dJy ď gRpx, ξq (17c)

ξ “ pπ, λ, βq P P
´

DR
¯

(17d)

where
gRpx, ξq “ πr ´

ÿ

aPAR0

`

1 ´ xipaq

˘

λa ´
ÿ

aPAR1

xipaqβa,

provides a valid lower bound on the optimal value of the integer bilevel pro-
gram (1).

Proof We prove that any feasible solution to model (8) maps to a feasible
solution to model (17), concluding that model (17) corresponds to a relax-
ation of model (8), which in turn is an exact reformulation of problem (1) by
Proposition 2.
Let ppx, py, pξq be a feasible solution to model (8). Consider a vector ξ1 “ pπ1, λ1, β1q

such that

λ1
a “ pλa @a P AR0

β1
a “ pβa @a P AR1

π1
u “ pπu @u P N R .

By construction, ξ1 satisfies (17d). Moreover, since AR0
Ď A0, AR1

Ď A1, and
pλ, pβ ě 0, we have

ÿ

aPAR0

`

1 ´ pxipaq

˘

λ1
a ď

ÿ

aPA0

`

1 ´ pxipaq

˘

pλa,

ÿ

aPAR1

pxipaqβ
1
a ď

ÿ

aPA1

pxipaq
pβa.

Therefore, ppx, py, ξ1q satisfies (17c). Since ppx, pyq P H, we conclude that ppx, py, ξ1q

is a feasible solution to model (17), implying that model (17) is a relaxation
of problem (1) as the objective functions are the same. [\

We remark that constraint (17c) can be linearized according to Propositions 3
and 4.
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4.2 Algorithm for Compiling a Restricted Diagram

Algorithm 1 presents a generic procedure to create a restricted decision di-
agram with maximum width W . It starts by initializing the diagram with a
root and a sink node, and creates nF ` nL ` 1 queues, each associated with
a layer. Then, it builds the diagram layer by layer, starting from the root
node. At each layer, it selects an unvisited node u and tries to create two
new nodes, expanding the associated encoded solutions with values ν “ 0 and
1. To create a new node, it first verifies whether the partial evaluation pu of
Cx ` Dy up to node u does not lead to infeasibility of the constraints. This
is done by calling function notInfeasible (line 14), which determines for each
constraint whether a feasible completion exists, by evaluating the minimum
contribution of each of the remaining variables in the constraint (this is also
known as bounds propagation). If setting value ν does not detect any infea-
sible constraint, notInfeasible returns True and a new node v is created. The
function addNodepv,Qℓ`1q (line 19) first determines whether v already exists
in the queue Qℓ`1 associated with the next layer, in which case v is merged
with that node. Otherwise, v is added as a new node to Qℓ`1. Lastly, the
new arc pu, vq is built for the follower or leader case (lines 20-24). Finally,
on line 25, the algorithm checks whether the length of a queue surpasses the
maximum width W . If so, it reduces the queue by only keeping the W nodes
with the best follower objective function values, discarding the remaining ones
and their incoming arcs.

Proposition 6 Algorithm 1 compiles a restricted diagram of size OppnF `

nLqW q in OpmpnF ` nLqq time, where m is the number of constraints in the
follower’s problem.

Proof By construction, the restricted diagram has size OppnF ` nLqW q. Re-
garding the time complexity, the evaluation of notInfeasible in line 14 takes
Opmq steps for m constraints for each node in a layer. Because each node has
at most two outgoing arcs, the maximum number of nodes in any layer is 2W ,
for constant W . For nF ` nL ` 1 layers this gives OpmpnF ` nLqq steps in
total. All other steps in lines 7-24 take constant time. The sorting in line 26
takes OpW logW q time as there are at most 2W nodes in each layer. Because
W is a constant, the overall time complexity follows. [\

We remark that in certain cases, our relaxation can readily prove optimality
for the original bilevel problem.

Proposition 7 Consider a solution ppx, pyq obtained by solving model (17). If
dJ

py ď ϕppxq, then ppx, pyq is optimal for problem (1).

Proof By Proposition 5, cJ
Lpx ` cJ

F py is a lower bound on the optimal value. If
dJ

py ď ϕppxq, then ppx, pyq is a bilevel-feasible solution and cJ
Lpx ` cJ

F py is also an
upper bound on the optimal value. [\
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Algorithm 1: Procedure to generate a restricted decision diagram.

1 Parameters: maximum width W
2 Input: binary bilevel programming instance I
3 initialize diagram D “ pN ,Aq Ð ptr, tu,Hq with root r and sink t
4 initialize queues Q1 Ð tru, QnF `nL`1 Ð ttu, Qℓ Ð H @ℓ “ 2, . . . , nF ` nL

5 for ℓ “ 1, . . . , nF ` nL do
6 while Qℓ ‰ H do
7 select node u Ð Qℓr0s and remove it from Qℓ

8 set pu Ð partial evaluation of Cx ` Dy at node u
9 for ν “ 0, 1 do

10 if ℓ ď nF then
11 set pp Ð pu ` Dipℓq ¨ ν

12 else
13 set pp Ð pu ` Cipℓq ¨ ν

14 if notInfeasiblepℓ, ppq “ True then
15 create node v
16 if ℓ “ nF ` nL then
17 set v Ð t // Reached last layer

18 else
19 addNodepv,Qℓ`1q

20 if ℓ ď nF then
21 create follower ν-arc pu, vq with cost ν ¨ dipℓq

22 else
23 create leader ν-arc pu, vq with capacity

ν ¨ xipℓq ` p1 ´ νq ¨
`

1 ´ xipℓq

˘

24 add arc pu, vq to A
25 if |Qℓ`1| ą W then
26 sort nodes in Qℓ`1 by increasing follower objective function value
27 discard all but the first W nodes from Qℓ`1

28 remove the associated arcs from A
29 add all nodes from Qℓ`1 to N ℓ`1

30 return D

4.3 An Exact Iterative Method

We propose an iterative procedure to extend the computation of the dual
bound to an exact method for solving the integer bilevel programming prob-
lem (1), presented in Algorithm 2. We assume that an initial restricted decision
diagramDR has been compiled. The algorithm iteratively solves relaxation (17)
and checks whether the follower solution is optimal. If not, it adds the leader
solution with the optimal follower response to the relaxation by incorporating
the associated follower dual variables and constraints, and repeats these steps
until the optimum is found.

Proposition 8 Algorithm 2 returns the optimal solution to the integer bilevel
programming problem (1) in a finite number of iterations, assuming that the
leader and follower problems have a finite number of integer solutions.

The proof follows immediately because, in the worst case, Algorithm 2 may
enumerate all possible leader solutions with all associated optimal follower
responses. It also shows that the restricted decision diagram can potentially
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Algorithm 2: Iterative compilation procedure.

1 Input: restricted decision diagram DR

2 while True do
3 solve model (17) to obtain solution ppx, pyq and dual bound pz
4 solve the optimal follower’s response to px to obtain solution y1 and optimal

objective value z1

5 if pz “ z1 then
6 terminate and return the optimal solution ppx, pyq

7 else

8 add the path encoding py1, pxq to DR

accelerate this process if it represents the “right” subset of leader and follower
solutions.
As an alternative to explicitly adding the leader path and follower solution to
the diagram in each iteration, we can equivalently represent this using a “no-
good” cut formulation encoding the paths, similar to the approach by Lozano
and Smith [31]. By doing so, we avoid introducing more dual variables. In our
computational analysis, adding the no-good cuts formulation to a fixed initial
decision diagram generally yielded more efficient solving times than explicitly
adding the paths to the diagram.

5 Layer Contraction

Even after compiling a restricted decision diagram, the resulting relaxation (17)
can become hard to solve. We now propose two contraction procedures that
help diminish this burden, substantially reducing the number of variables and
constraints without losing any relevant information.

Follower layers contraction Variables π in model (8) enforce the selection
of a feasible shortest r-u path entering any node u P NnF `1. This implies that
any path reaching a node u P NnF `1 with a greater length than the shortest
r-u path becomes redundant, i.e., can be removed from the diagram without
loss of optimality. Thus, after compiling layer NnF `1, we can collapse all the
follower layers but layer 1 into a single layer. This way, any node u P NnF `1

will have only one incoming arc pr, uq, leaving the root node r with a length
equivalent to the shortest r-u path, and infinite capacity. Figure 5a exemplifies
this contraction.

Leader layers contraction Consider any node u P NnF `1 and let pu be
the partial evaluation of Cx ` Dy according to Algorithm 1 (line 8). Observe
that, given x P t0, 1unL , there will be at least one u-t path with positive
capacity if and only if Cx ď b ´ pu. Moreover, no matter what u-t path is
considered, the follower’s cost remains defined by the length of the follower
arcs. Therefore, without loss of optimality, we can replace all u-t paths with
an arc pu, tq with length 0 and capacity 1pCx ď b ´ puq, where 1p¨q denotes
the indicator function. Doing this for every node u P NnF `1 corresponds to
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contracting all leader layers into one layer, as illustrated in Figure 5b. In this
example, the capacities of new arcs are given by

a1 “ 1

ˆ

x ě 0,
3x ď 8

˙

, a2 “ 1

ˆ

x ě 2,
3x ď 6

˙

, a3 “ 1

ˆ

x ě 1,
3x ď 7

˙

, a4 “ 1

ˆ

x ě 2,
3x ď 9

˙

.

We remark that, in the case of using restricted diagrams, this contraction also
helps yield new bounds for x values that may not have been initially encoded.
Moreover, for each node u P NnF `1, function 1pCx ď b´puq can be linearized
through additional variables and big-M constraints. Finally, observe that, since
both contractions are applied to separate sets of layers, we can execute both
without loss of optimality, as illustrated in Figure 5c.

r

t

y0

y1

x0

x1

2 0 1 3

r

t

a1 a2 a3 a4

r

t

2 0 1 3

a1 a2 a3 a4

a. Follower layers contraction b. Leader layers contraction c. Both contractions

Fig. 5: Contractions applied to diagram in Figure 3b. a) Contraction of the
follower layers. b) Contraction of the leader layers. c) Contraction of the fol-
lower and leader layers.

6 Extension to the Pessimistic Setting

We now consider the integer linear version of the pessimistic bilevel program
defined in [31,42]. Similar to the procedure exposed in Section 3, based on a
value function reformulation, we show how to extend model (8) to obtain a
relaxation for this setting. Recall that, in the pessimistic case, the follower aims
to maximize the leader’s objective function, while keeping the solution bilevel-
feasible. Similar to model (1), the pessimistic version can be reformulated using
the value function ϕ as

min
x

"

max
y

␣

cJ
Lx ` cJ

F y
(

: px, yq P H, dJy ď ϕpxq

*

. (18)
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Observe that, given a leader’s decision px, if there exists a vector py making
solution ppx, pyq infeasible for the leader’s problem, then the follower will select
such vector, achieving cJ

Lpx ` cJ
F py “ `8. Furthermore, models (1) and (18)

share the same HPR H. Hence, any optimal solution to model (18) is also
feasible to model (1), but potentially suboptimal. These two key ideas allow
the use of model (8) as a base to obtain an enhanced relaxation of model (18).
In a similar fashion to [31,42], we start from the value function reformulation
of (18), which corresponds to

min cJ
Lx ` cJ

F y (19a)

s. t. px, yq P H (19b)

dJy ď ϕpxq (19c)

cJ
F y ě ηpx, ϕpxqq (19d)

Ax ` Bpy ď a @py P Rpxq. (19e)

where ηpx, zq “ maxtcJ
F y : y P Ypxq, dJy ď zu. Constraint (19d) forces a

feasible solution px, yq to maximize cJ
F y over Ypxq, and constraints (19e) force

any leader decision vector x to be such that there is no feasible follower reaction
y making px, yq infeasible for the leader’s problem.
Note that we can now reformulate model (19) by adding new variables and
no-good cuts as in [31] to our decision diagram-based reformulation (8). How-
ever, we can also further exploit the compiled decision diagram D to obtain
a stronger relaxation of (19). To do so, we reformulate the program obtained
from (19) by relaxing (19e), i.e., model

min cJ
Lx ` cJ

F y (20a)

s. t. px, yq P H (20b)

dJy ď ϕpxq (20c)

cJ
F y ě ηpx, ϕpxqq. (20d)

We now use the components of D “ pN ,A, ν, lq to model constraint (20d). For
any u P N , let slu denote the minimum length among all r-u paths in D, and
consider the additional arc-length vector lP defined as lPa “ νacFipaq

for any

follower arc a and lPa “ 0 for any leader arc a. We next show how to use D to
compute η.

Proposition 9 Consider px P t0, 1u
nL such that Yppxq ‰ H and pz P R. Then,

ηppx, pzq “ max
ÿ

aPA
lPawa (21a)

s. t. (4b)-(4d) (21b)

wa ď 1
`

slu ď pz
˘

u P NnF `1, a P δ`puq (21c)

w P R|A|

` . (21d)
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Proof Similar to the proof of Proposition 1. In this case, due to constraints
(21c), we also discard any path encoding a vector ppx, yq with a follower portion
y P Yppxq violating dJy ď pz as a feasible solution. Thus, given an optimal
solution w˚ to model (21), we have

ÿ

aPA
lPaw

˚
a “ cJ

F y
˚ “ max

␣

cJ
F y : dJy ď pz, y P Yppxq

(

“ ηppx, pzq,

where y˚ is the follower portion of the binary vector encoded by w˚. [\

Following the same procedure as in Section 3, we can use LP duality to com-
pute ηppx, pzq by solving

min gPppx, pz, ζq (22a)

s. t. πu ´ πv ě lPuv pu, vq “ a P A zpA0
YA1

q (22b)

πu ´ πv ` λuv ě lPuv pu, vq “ a P A0
zAnF `1 (22c)

πu ´ πv ` βuv ě lPuv pu, vq “ a P A1
zAnF `1 (22d)

πu ´ πv ` λuv ` γuv ě lPuv pu, vq “ a P A0
XAnF `1 (22e)

πu ´ πv ` βuv ` γuv ě lPuv pu, vq “ a P A1
XAnF `1 (22f)

λ P R|A0|
` , β P R|A1|

` (22g)

γ P R|AnF `1|
` (22h)

ζ “ pπ, λ, β, γq, (22i)

where

gPpx, z, ζq “ πr `
ÿ

aPA0

`

1 ´ xipaq

˘

λa `
ÿ

aPA1

xipaqβa

`
ÿ

uPNnF `1

1
`

slu ď z
˘

ÿ

aPδ`puq

γa.

Let PPpDq denote the feasible solution set of model (22). We next show that
constraint (20d) can be replaced with the system

#

cJ
F y ě gPpx, dJy, ζq,

ζ “ pπ, λ, β, γq P PPpDq
.

Proposition 10 Model

min cJ
Lx ` cJ

F y (23a)

s. t. px, yq P H (23b)

dJy ď gpx, ξq (23c)

ξ “ pπ, λ, βq P P pDq (23d)

cJ
F y ě gPpx, dJy, ζq (23e)

ζ “
`

πP, λP, βP
˘

P P
´

DP
¯

. (23f)

is an exact reformulation of the relaxed pessimistic integer bilevel program (20).
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Proof From the proof of Proposition 2, we know that, for any px, yq P H, con-
straints (23c)-(23d) force ξ P P pDq to satisfy dJy ď gpx, ξq ď ϕpxq. Therefore,
by the definition of ϕ, we have dJy “ ϕpxq for all px, yq P H. We now follow
the same logic to interpret constraint (23e).

We first consider a feasible solution ppx, py, pξ, pζq to model (23) and show that
ppx, pyq is feasible to model (20). For any real value z P R, by Proposition 9 and
weak duality, we have

gP
´

px, z, pζ
¯

ě η ppx, zq .

Therefore, constraints (23e)-(23f) ensure that

cJ
F py ě gP

´

px, dJ
py, pζ

¯

“ gP
´

px, ϕppxq, pζ
¯

ě η ppx, ϕppxqq ,

and thus ppx, pyq satisfies (20d). We conclude that ppx, pyq is feasible to model (20).
We now show that for any solution ppx, pyq feasible to model (20), there exist
vectors ξ and ζ such that ppx, py, ξ, ζq is feasible to model (23). Let pw be the
flow vector associated with the unique path in the diagram encoding ppx, pyq.
By construction, we have that pw is feasible to model (21) when pz ě dJ

py and

ÿ

aPA
lPa pwa “ cJ

F py.

Furthermore, constraint (23e) and Proposition 9 ensure that pw is an optimal
solution to model (21) with arc capacities induced by ppx, dJ

pyq, i.e.,

ÿ

aPA
lPa pwa “ η

`

px, dJ
py
˘

.

Now, let ξ1 be an optimal solution to model (7) and ζ 1 be an optimal solution
to model (22). By definition, ξ1 satisfies (8d) and, by strong duality, satisfies

ϕppxq “ gppx, ξ1q.

Furthermore, ζ 1 satisfies (23f) and, by strong duality, satisfies

η
`

px, dJ
py
˘

“ gP
`

px, dJ
py, ζ 1

˘

.

Since dJ
py “ ϕppxq, we conclude that ppx, py, ξ1, ζ 1q is feasible to model (23). As

the objective functions for models (20) and (23) are the same, we conclude
that both models are equivalent. [\

We remark that constraint (23e) can be linearized in a similar fashion to con-
straint (23c), i.e., using Propositions 3 and 4. Furthermore, we can also obtain
a valid bound on the optimal value of model (23) by compiling a restriction
of D.
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Proposition 11 The optimal value of

min cJ
Lx ` cJ

F y (24a)

s. t. px, yq P H (24b)

dJy ď gRpx, ξq (24c)

ξ “ pπ, λ, βq P P
´

DR
¯

(24d)

cJ
F y ě gPR

`

x, dJy, ζ
˘

(24e)

ζ “
`

πP, λP, βP, γP
˘

P PP
´

DR
¯

, (24f)

where

gPRpx, z, ζq “ πr `
ÿ

aPAR0

`

1 ´ xipaq

˘

λa `
ÿ

aPAR1

xipaqβa

`
ÿ

uPNnF `1

1
`

slu ď z
˘

ÿ

aPδ`puq

γa,

provides a valid lower bound on the optimal value of model (23).

Proof As in the proof of Proposition 5, we show that any feasible solution to
model (23) maps to a feasible solution to model (24).

Let ppx, py, pξ, pζq be a feasible solution to model (23). Consider vectors ξ1 “

pπ1, λ1, β1q and ζ 1 “ pπP1

, λP1

, βP1

, γP1

q such that

λ1
a “ pλa, λP1

a “ pλP
a @a P AR0

β1
a “ pβa, βP1

a “ pβP
a @a P AR1

π1
u “ pπu, πP1

u “ pπP
u @a P N R

γP1

“ pγP
a @a P AnF `1 .

By the proof of Proposition 5, ξ1 satisfies (24d) and ppx, py, ξ1q satisfies (24c). By
construction, ζ 1 satisfies (24f). Moreover, since AR0

Ď A0,AR1
Ď A1,N R

nF `1 Ď

NnF `1, and pλP, pβP, pγP ě 0, we have

ÿ

aPAR0

`

1 ´ pxipaq

˘

λP1

a ď
ÿ

aPA0

`

1 ´ pxipaq

˘

pλP
a ,

ÿ

aPAR1

pxipaqβ
P1

a ď
ÿ

aPA1

pxipaq
pβP
a ,

ÿ

uPN R
nF `1

1
`

slu ď dJ
py
˘

ÿ

aPδ`puq

γP1

a ď
ÿ

uPNnF `1

1
`

slu ď dJ
py
˘

ÿ

aPδ`puq

pγP
a .

Therefore, ppx, py, ζ 1q satisfies (24e). Since ppx, pyq P H, we conclude that ppx, py, ξ1, ζ 1q

is a feasible solution to model (24), implying that model (24) is a relaxation of
model (23), as the objective function of models (24) and (23) are the same. [\
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We conclude this section by remarking that several works from the literature
consider special cases of bilevel problems without linking constraints, i.e., A “

B “ 0, or in which the follower variables do not affect the leader’s constraints,
i.e., B “ 0. For these cases, model (20) provides an exact reformulation of the
pessimistic problem instead of a relaxation, which by Proposition 10 implies
that our DD-based model (23) also provides an exact single-level reformulation
of the pessimistic problem that can be readily linearized as described above.

7 Case Study: Bilevel Independent Set with Knapsack Constraints

We will see in the experimental section that our generic approach can be
effective for some problem classes. However, if we use the standard linear en-
coding of problem (1), the decision diagrams do not have the ability to exploit
problem-specific structures, which can often drastically improve their repre-
sentational power. For that reason, we next apply our generic method to a case
study that possesses a specific combinatorial structure allowing us to further
streamline our method. Specifically, we introduce the Bilevel Independent Set
Problem with Knapsack Constraints (BISP-KC).

In the BISP-KC, we are given a graph G “ pV,Eq with vertex set V and
edge set E. The leader solves a knapsack problem while the follower solves a
maximum-reward independent set problem with an additional knapsack-type
constraint depending on the leader’s decisions. This problem is motivated by
social network applications, where a follower entity tries to maximize its in-
fluence on the network by selecting compatible “influencers”, and a regulator
entity, acting as a leader, aims to maximize social welfare by altering or in-
terdicting the compatibility of the “influencers”, subject to a budget. In this
case, the follower’s knapsack constraint generalizes the interdiction effect of
the leader’s decisions.

The mathematical formulation has the form of the generic model (1), where
both the leader and the follower have a binary variable associated with each
node in V , i.e., nL “ nF “ |V |. The leader’s problem knapsack constraint
has “weight” coefficients pwL, wF q and “capacity” scalar bL, whereas for the
follower’s problem knapsack constraint these are pωL, ωF q and bF .

min cJ
Lx ` cJ

F y (25a)

s. t. wJ
Lx ` wJ

F y ď bL (25b)

x P t0, 1unL (25c)

y P argmin
syPYpxq

␣

dJ
sy
(

, (25d)

where

Ypxq :“

"

y P t0, 1unF :
ωJ
F y ď bF ´ ωJ

Lx
yi ` yj ď 1 @pi, jq P E

*

.



Decision Diagrams for Integer Bilevel Programming 25

We assume cL, wL, ωL P RnL , cF , wF , ωF P RnF , and bL, bF P R. To maximize
the follower’s objective function, we keep the argmin function for consistency
and encode the reward coefficients d as negative numbers.
To compile the decision diagram, we could apply Algorithm 1 directly on the
linear representation of model (25). However, a more efficient representation
for the follower’s portion uses the compilation proposed in [7], in which each
node of the decision diagram represents the set of vertices S that can still be
added to the independent set. In addition, we represent the remaining capacity
k of the follower’s problem at that node. Given a node u with state pu “ pS, kq

in layer Qℓ representing decision yipℓq, function notInfeasible for ν “ 1 returns
false if ipℓq R S or if ωFipℓq

` k ą bF . For ν “ 0, it always returns true. The
compilation of the leader portion of the decision diagram follows the generic
implementation of the algorithm.

8 Experimental Results

We next present a computational evaluation of our approach. We first consider
generic bilevel integer programming problems from the BOBILib benchmark
instance set [38]. We then present results for the BISP-KC as an example for
which the decision diagram approach can leverage the problem structure. We
compare our exact iterative compilation method (Section 4.3) to the branch-
and-cut approaches from [19] and [36] which represent the state-of-the-art for
solving integer bilevel programming problems. We will refer to our iterative
method as IDDR, and to the branch-and-cut-approaches as FLMS and MibS, re-
spectively. Both FLMS and MibS are compiled using their latest version (MibS’s
is 1.2.1 and FLMS has a unique version) and executed using their default set-
tings.
For the construction of the restricted diagrams, we use Algorithm 1 with a
maximum width W of 25 for the bilevel MIPLIB instances, and 500, 1000,
and 2000 for the BISP-KC instances (these numbers were determined to strike
a reasonable balance between bound quality and solving time). We employ the
result from [19, Thm. 2] to pre-process the follower’s y values and reduce the
size of model (17). All decision diagrams apply the layer contraction operations
for the leader and the follower as described in Section 5. The iterative compi-
lation method (Section 4.3) uses the no-good encoding of the leader solution
and optimal follower solutions at each iteration.
Our algorithms are implemented in Python 3.10 and all computations are
executed on a 12–core Intel(R) Xeon(R) Gold 6248R CPU @ 3.00GHz run-
ning Linux Ubuntu. All optimization problems are solved using CPLEX 22 or
Gurobi 10 (when indicated) with a 1-hour time limit.

8.1 Generic Integer Bilevel Programming: BOBILib Benchmark

We first study generic integer bilevel programming instances from the BO-
BILib benchmark set [38]. We consider instances that only contain binary
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Table 1: Results for the BOBILib instances. For each instance, we report the
best known solution (BKS), and the total solving time in seconds, upper bound
(UB), and optimality gap (%) for the branch-and-cut methods FLMS [19],
MibS [36], and our method IDDR. Bold entries indicate new/improved bounds,
or newly closed open instances (0% gap).

Instance BKS
FLMS MibS IDDR

Time (s) UB Gap (%) Time (s) UB Gap (%) Time (s) UB Gap (%)

stein27-0.1 18 0 18 0.00 1 18 0.00 1 18 0.00
stein27-0.5 19 0 19 0.00 0 19 0.00 0 19 0.00
stein27-0.9 24 0 24 0.00 0 24 0.00 1 24 0.00

stein45-0.1 30 7 30 0.00 16 30 0.00 11 30 0.00
stein45-0.5 32 0 32 0.00 0 32 0.00 11 32 0.00
stein45-0.9 40 0 40 0.00 2 40 0.00 14 40 0.00

enigma-0.1 0 1 0 0.00 1 0 0.00 0 0 0.00
enigma-0.5 0 8 0 0.00 1 0 0.00 1 0 0.00
enigma-0.9 0 593 0 0.00 1 0 0.00 3 0 0.00

lseu-0.1 1,120 0 1,120 0.00 2 1,120 0.00 1 1,120 0.00
lseu-0.5 2,263 3,600 2,313 7.63 3,600 2,263 12.15 3,600 2,400 46.71
lseu-0.9 5,838 95 5,838 0.00 3,600 5,838 19.01 5 5,838 0.00

p0033-0.1 3,089 0 3,089 0.00 0 3,089 0.00 0 3,089 0.00
p0033-0.5 3,095 0 3,095 0.00 0 3,095 0.00 0 3,095 0.00
p0033-0.9 4,679 0 4,679 0.00 1 4,679 0.00 0 4,679 0.00

p0201-0.1 12,465 3,600 12,465 20.90 3,600 12,615 55.11 3 12,225 0.00
p0201-0.5 13,635 2,195 13,635 0.00 3,600 13,985 70.07 3,600 13,810 26.43
p0201-0.9 15,025 5 15,025 0.00 3,600 15,025 78.06 10 15,025 0.00

p0282-0.1 260,781 3 260,781 0.00 3,600 261,188 1.05 2 260,781 0.00
p0282-0.5 272,659 3,600 272,659 0.93 3,600 272,914 5.56 34 272,659 0.00
p0282-0.9 614,837 3,600 614,837 28.85 3,600 638,033 139.84 3 614,837 0.00

p0548-0.1 11,069 3,600 11,086 16.85 3,600 - - 3,600 10,968 14.55
p0548-0.5 - 3,600 - - 3,600 - - 3,600 22,177 52.77
p0548-0.9 58,835 3,600 48,942 60.25 3,600 - - 3,600 48,942 64.33

p2756-0.1 13,912 3,600 14,550 77.07 3,600 - - 3,600 14,431 77.70
p2756-0.5 - 3,600 23,547 83.05 3,600 - - 3,600 26,663 85.64
p2756-0.9 33,847 3,600 33,362 86.12 3,600 - - 3,600 38,131 88.36

l152lav-0.1 4,722 7 4,722 0.00 5 4,722 0.00 33 4,722 0.00
l152lav-0.5 4,816 3,600 4,817 1.27 3,600 4,907 2.81 3,600 4,915 3.21
l152lav-0.9 5,066 3,600 5,090 6.37 3,600 5,355 12.18 3,600 5,540 14.19

mod010-0.1 6,554 5 6,554 0.00 1 6,554 0.00 155 6,554 0.00
mod010-0.5 6,684 3,600 6,678 1.73 3,600 7,024 6.96 3,600 7,024 6.73
mod010-0.9 7,411 3,600 7,620 13.92 3,600 8,609 30.36 3,600 8,847 25.91

air03-0.1 381,812 3,600 378,890 8.96 3,600 386,502 6.62 3,600 403,334 15.26
air03-0.5 504,230 3,600 513,226 31.04 3,600 621,620 70.82 3,600 671,964 48.99
air03-0.9 763,632 3,600 762,132 53.18 3,600 883,408 142.33 3,600 885,774 61.07

air04-0.1 56,399 3,600 56,415 0.35 3,600 - - 3,600 57,754 2.80
air04-0.5 59,721 3,600 60,725 7.45 3,600 - - 3,600 64,960 13.57
air04-0.9 - 3,600 - - 3,600 - - 3,600 91,270 38.48

air05-0.1 26,577 1,005 26,577 0.00 3,600 - - 3,600 29,286 9.85
air05-0.5 33,757 3,600 32,528 18.70 3,600 - - 3,600 50,752 47.97
air05-0.9 40,046 3,600 - - 3,600 - - 3,600 60,259 56.09

fast0507-0.1 12,484 1 12,484 0.00 3,600 - - 422 12,484 0.00
fast0507-0.5 61,439 1 61,439 0.00 3,600 - - 449 61,439 0.00
fast0507-0.9 109,916 1 109,916 0.00 3,600 - - 417 109,916 0.00

cap6000-0.1 -1,967,015 802 -1,967,015 0.00 3,600 -1,734,110 29.26 237 -1,967,015 0.00
cap6000-0.5 - 3,600 - - 3,600 -1,169,820 52.28 3,600 -1,170,489 106.92
cap6000-0.9 - 3,600 - - 3,600 -100,780 95.89 3,600 -108,130 2134.40

mitre-0.1 122,190 3,600 - - 3,600 122,310 6.21 3,600 122,205 5.72
mitre-0.5 147,030 3,600 - - 3,600 147,045 27.69 3,600 147,030 21.67
mitre-0.9 169,425 3,600 169,470 31.95 3,600 169,470 47.15 3,600 169,470 32.04

nw04-0.1 17,066 1,023 17,066 0.00 3,600 - - 3,600 17,796 4.45
nw04-0.5 24,828 3,600 26,396 37.08 3,600 49,288 199.10 3,600 39,734 57.04
nw04-0.9 50,540 3,600 44,026 59.80 3,600 - - 3,600 64,666 72.12

seymour-0.1 475 3,600 476 1.33 3,600 - - 3,600 - -
seymour-0.5 807 1 807 0.00 3,600 - - 229 807 0.00
seymour-0.9 1,251 0 1,251 0.00 3,600 - - 240 1,251 0.00

harp2-0.1 -72,444,149 3,600 -72,111,431 2.45 3,600 - - 3,600 -67,299,607 9.75
harp2-0.5 -48,776,284 3,600 - - 3,600 - - 3,600 -43,700,126 69.08
harp2-0.9 -1,323,015 3,600 -154,337 47,836.26 3,600 - - 3,600 3,013,774 2538.80
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variables; for these, constraints are all present in the follower’s problem (i.e.,
mL “ 0), and d is set to ´cF . The BOBILib instances were derived from MI-
PLIB 3.0 instances, and consider a different percentage of follower variables
(nF “ δ ¨ pnF ` nLq for δ P t10%, 50%, 90%u). Detailed information about the
instances can be found in Table A.1 of Appendix A.. We compare our exact
iterative method (IDDR) with the state-of-the-art branch-and-cut methods by
Fischetti, Ljubić, Monaci, and Sinnl [19], denoted FLMS, and by Tahernejad,
Ralphs, and DeNegre [36], denoted MibS. Because the results in [19] consider
CPLEX 12 as the default MIP solver, we first update their code and execute
FLMS using CPLEX 22. Table B.2 in Appendix B. presents the comparison of
running FLMS with CPLEX 12 and CPLEX 22 on the benchmark set. This
update allows FLMS to find an improved upper bound for eight instances, in-
cluding instance p2756-0.5, for which no known upper bound has been reported
in BOBILib yet.

Table 1 compares the methods IDDR, FLMS, and MibS on the BOBILib bench-
mark instances, all running CPLEX 22 as the default MIP solver. For each
instance, we indicate the best-known solution (BKS), and we report for each
solution method the total solving time in seconds, upper bound (UB), and
optimality gap (%). The optimality gap is computed as pUB ´ LBq ¨ |UB|´1,
where LB corresponds to the lower bound. The reported CPU times include
all preprocessing and decision diagram compilation runtimes. A dash (-) indi-
cates a missing value due to a time-out. Bold entries indicate new or improved
bounds.

Overall, no method always dominates the others on this benchmark. However,
FLMS and IDDR both solve 27 instances optimally, while MibS solves 15 instances
optimally. We also observe that IDDR is able to report bounds for 59 (out of 60)
instances of the testbed, whereas FLMS and MibS report 52 and 37, respectively,
within the 1-hour time limit. In addition, we note that IDDR finds new or
improved upper bounds for six instances, and closes two of these instances
(p0201-0.1 and p0282-0.9) for the first time. We conclude that IDDR provides
competitive results on this generic benchmark set, even if the decision diagram
compilation does not leverage specific problem structures.

8.2 Bilevel Independent Set Problem with Knapsack Constraints

We next consider the BISP-KP, which we introduced in Section 7. The purpose
of this experiment is to evaluate the performance of our method when the de-
cision diagram compilation can take advantage of problem-specific structures.
We consider randomly generated instances with varying problem parameters:

– Independent set problem: We randomly generate Erdös-Rényi graphs of
different sizes and varying edge density, similar to Bergman et al. [7], with
|V | P t50, 100, 200, 300u and edge density (the probability of an edge ap-
pearing in the graph) p P t0.25, 0.5, 0.75u.
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Table 2: Computational evaluation on the BISP-KC. The decision diagram
approach IDDR with varying maximum width W is compared to branch-and-
cut methods FLMS [19] and MibS [36]. Method IDDR (W “ 0) starts with an
empty diagram. For each instance class and method, we report the number
of instances solved, the average solving time (of the solved instances), and
the average optimality gap (of the unsolved instances). All methods apply a
1-hour time limit.

|V | p
FLMS MibS IDDR (W “ 0)

#Opt Time (s) Gap (%) #Opt Time (s) Gap (%) #Opt Time (s) Gap (%)

50
0.25 5/30 1145 49.45 0/30 - 23.65 30/30 3 0
0.5 4/30 410 22.26 3/30 64 15.42 30/30 2 0
0.75 21/30 113 7.45 18/30 502 5.52 30/30 1 0

100
0.25 0/30 - 26.1 0/30 - 18.56 30/30 24 0
0.5 0/30 - 18.43 0/30 - 12.77 30/30 8 0
0.75 5/30 2078 9.29 1/30 1355 7.33 30/30 7 0

200
0.25 0/30 - - 0/30 - 20.04 10/30 2971 12.73
0.5 0/30 - - 0/30 - 9.67 30/30 321 0
0.75 0/30 - 9.46 0/30 - 5.52 30/30 73 0

300
0.25 0/30 - - 0/30 - - 0/30 - 13.92
0.5 0/30 - - 0/30 - 9.92 14/30 2426 4.23
0.75 0/30 - 3.35 0/30 - 7.58 30/30 642 0

|V | p
IDDR (W “ 500) IDDR (W “ 1000) IDDR (W “ 2000)

#Opt Time (s) Gap (%) #Opt Time (s) Gap (%) #Opt Time (s) Gap (%)

50
0.25 30/30 3 0 30/30 3 0 30/30 3 0
0.5 30/30 1 0 30/30 1 0 30/30 1 0
0.75 30/30 1 0 30/30 1 0 30/30 1 0

100
0.25 30/30 34 0 30/30 32 0 30/30 31 0
0.5 30/30 6 0 30/30 6 0 30/30 7 0
0.75 30/30 4 0 30/30 4 0 30/30 4 0

200
0.25 9/30 2021 6.49 9/30 1687 6.55 9/30 1667 5.99
0.5 30/30 183 0 30/30 147 0 30/30 136 0
0.75 30/30 43 0 30/30 43 0 30/30 43 0

300
0.25 0/30 - 13.1 0/30 - 12.04 0/30 - 11.75
0.5 18/30 1724 1.98 23/30 1833 3.6 27/30 1465 1.74
0.75 30/30 177 0 30/30 166 0 30/30 166 0

– Knapsack constraints: The weight vectors wL, wF , ωL, ωF are drawn from
U r´10, 10s, while the right-hand sides bL, bF are defined as α ¨ pnF ` nLq

using a scaling parameter α P t´0.1, 0, 0.1u.
– Objective functions: The leader coefficients cL and cF are drawn from

U r´50, 50s, and the follower coefficients d are drawn from U r´50,´25s.

We use the three parameters |V |, p, and α to define an instance configuration.
This allows us to evaluate the performance of the methods when the graph
size |V | increases, when the edge density p increases, and when the knapsack
capacity increases (via α). With the above ranges, this yields 36 configurations.
For each configuration p|V |, p, αq we generate 10 instances, resulting in a total
of 360 instances.
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We compare the decision diagram approach IDDR with varying width (W “

0, 500, 1000, 2000) to the branch-and-cut methods FLMS and MibS. All meth-
ods use CPLEX 22 as the default MIP solver. The results are presented in
Table 2. (A more detailed comparison, using performance plots, can be found
in Figure C.1 in Appendix C..) For each method, we report the total number
of instances solved (#Opt), the average solving time in seconds of the solved
instances, and the average optimality gap (%) of the unsolved instances.
One can observe that the generic integer bilevel programming solvers FLMS and
MibS do not scale beyond |V | “ 50, whereas IDDR can optimally solve instances
up to |V | “ 300, for larger density. In addition, we find that instances with
denser graphs are easier for all methods. The impact of the scaling factor α for
the knapsack constraints is less pronounced, so we do not show this separately
in the table. Overall, on this benchmark, FLMS solves 35 instances, MibS solves
22 instances, and IDDR solves up to 306 instances. We also observe that IDDR
generally performs better when providing a larger initial diagram.
This demonstrates that the decision diagram-based reformulation substantially
benefits from leveraging domain-specific structure, relative to the generic ap-
proaches. Larger initial diagrams generally strengthen the formulation, and
reduce solving time by lowering the number of exact value function compu-
tations. An interesting observation is that the baseline approach IDDR with
W “ 0 performs remarkably well. It shows that even without an initial dia-
gram IDDR, it can still be effective on this problem domain.

9 Conclusions

We introduced a new single-level reformulation for integer bilevel programs. It
is based on a compact representation of the follower’s feasible solution set using
decision diagrams, over which we define a network flow model, parameterized
by the leader’s solution. Our reformulation ensures bilevel optimality by en-
coding the optimality conditions over the paths of the network, and provides
an optimal solution when it is defined over an exact decision diagram. Because
exact decision diagrams can grow exponentially large, we introduced a scalable
approach that uses restricted decision diagrams of polynomial size, and showed
that these provide dual bounds. To obtain an exact method, we proposed to
iteratively solve and strengthen the relaxation by adding a new path to the
decision diagram or, equivalently, by adding bilevel no-good cuts. We also
extended our DD-based relaxations for the pessimistic setting. In our experi-
mental evaluation, we first compared our approach to state-of-the-art solvers
on the BOBILib benchmark with integer bilevel programming instances. We
showed that our method provides competitive results, optimally solving as
many instances as the best existing solver. In addition, we found new or im-
proved bounds for six instances and closed two open instances for the first
time. We also introduced a new problem domain, the bilevel independent set
problem with knapsack constraint, to study the performance of our approach
when the decision diagram compilation can benefit from the combinatorial
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structure of the follower’s problem. Indeed, we showed that our method scaled
to much larger instances than the generic integer bilevel programming solvers.
We conclude that our decision diagram reformulation can be a scalable and
effective approach for solving integer bilevel programming problems.
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13. Castro, M.P., Ciré, A.A., Beck, J.C.: Decision Diagrams for Discrete Optimization: A
Survey of Recent Advances. INFORMS Journal on Computing 34(4), 2271–2295 (2022)

14. Cire, A.A., Van Hoeve, W.J.: Multivalued decision diagrams for sequencing problems.
Operations Research 61(6), 1411–1428 (2013)

15. Colson, B., Marcotte, P., Savard, G.: An overview of bilevel optimization. Annals of
Operations Research 153(1), 235–256 (2007)

16. Dempe, S., Kalashnikov, V., Rios-Mercado, R.Z.: Discrete bilevel programming: Appli-
cation to a natural gas cash-out problem. European Journal of Operational Research
166(2), 469–488 (2005)

17. DeNegre, S.T., Ralphs, T.K.: A Branch-and-cut Algorithm for Integer Bilevel Linear
Programs. In: J.W. Chinneck, B. Kristjansson, M.J. Saltzman (eds.) Operations research
and cyber-infrastructure, pp. 65–78. Springer (2009)



Decision Diagrams for Integer Bilevel Programming 31

18. Fischetti, M., Ljubic, I., Monaci, M., Sinnl, M.: Intersection cuts for bilevel optimiza-
tion. In: Q. Louveaux, M. Skutella (eds.) Integer Programming and Combinatorial
Optimization (IPCO), Proceedings, Lecture Notes in Computer Science, vol. 9682, pp.
77–88. Springer (2016)
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Appendix

A. BOBILib Instances Information

Table A.1 presents the following information for the BOBILib instances [38]:
name, number of leader variables, number of follower variables, number of
follower constraints, and the instance status as reported in the official website
accessed on 01/16/2025. Bold lines indicate previously open instances closed
for the first time by our approach.

Table A.1: Information about BOBILib instances [38].

Instance nL nF mF Status

stein27-0.1 25 2 118 Closed
stein27-0.5 14 13 118 Closed
stein27-0.9 3 24 118 Closed

stein45-0.1 41 4 331 Closed
stein45-0.5 23 22 331 Closed
stein45-0.9 5 40 331 Closed

enigma-0.1 90 10 42 Closed
enigma-0.5 50 50 42 Closed
enigma-0.9 10 90 42 Closed

lseu-0.1 81 8 28 Closed
lseu-0.5 45 44 28 Closed
lseu-0.9 9 80 28 Open

p0033-0.1 30 3 16 Closed
p0033-0.5 17 16 16 Closed
p0033-0.9 4 29 16 Closed

p0201-0.1 181 20 133 Open
p0201-0.5 101 100 133 Closed
p0201-0.9 21 180 133 Closed

p0282-0.1 254 28 241 Closed
p0282-0.5 141 141 241 Closed
p0282-0.9 29 253 241 Open

p0548-0.1 494 54 176 Open
p0548-0.5 274 274 176 Open
p0548-0.9 55 493 176 Open

p2756-0.1 2,481 275 755 Open
p2756-0.5 1,378 1,378 755 Open
p2756-0.9 276 2,480 755 Open

l152lav-0.1 1,791 198 193 Closed
l152lav-0.5 995 994 193 Open
l152lav-0.9 199 1,790 193 Open

Instance nL nF mF Status

mod010-0.1 2,390 265 291 Open
mod010-0.5 1,328 1,327 291 Open
mod010-0.9 266 2,389 291 Closed

air03-0.1 9,682 1,075 248 Open
air03-0.5 5,379 5,378 248 Open
air03-0.9 1,076 9,681 248 Open

air04-0.1 8,014 890 1646 Open
air04-0.5 4,452 4,452 1646 Open
air04-0.9 891 8,013 1646 Open

air05-0.1 6,476 719 852 Closed
air05-0.5 3,598 3,597 852 Open
air05-0.9 720 6,475 852 Open

fast0507-0.1 56,709 6,300 507 Closed
fast0507-0.5 31,505 31,504 507 Closed
fast0507-0.9 6,301 56,708 507 Closed

cap6000-0.1 5,400 600 2299 Closed
cap6000-0.5 3,000 3,000 2299 Open
cap6000-0.9 600 5,400 2299 Open

mitre-0.1 9,652 1,072 2437 Open
mitre-0.5 5,362 5,362 2437 Open
mitre-0.9 1,073 9,651 2437 Open

nw04-0.1 78,734 8,748 72 Closed
nw04-0.5 43,741 43,741 72 Open
nw04-0.9 8,749 78,733 72 Open

seymour-0.1 1,235 137 4944 Open
seymour-0.5 686 686 4944 Closed
seymour-0.9 138 1,234 4944 Closed

harp2-0.1 2,694 299 185 Open
harp2-0.5 1,497 1,496 185 Open
harp2-0.9 300 2,693 185 Open
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B. MIP Solver Comparison for the Algorithm in [19]

Table B.2: MIP solver comparison on BOBILib instances for FLMS.

Instance
CPLEX 12 CPLEX 22

Time (s) UB Gap Time (s) UB Gap
stein27-0.1 0 18 0.00 0 18 0.00
stein27-0.5 0 19 0.00 0 19 0.00
stein27-0.9 0 24 0.00 0 24 0.00
stein45-0.1 6 30 0.00 7 30 0.00
stein45-0.5 0 32 0.00 0 32 0.00
stein45-0.9 0 40 0.00 0 40 0.00
enigma-0.1 0 0 0.00 1 0 0.00
enigma-0.5 9 0 0.00 8 0 0.00
enigma-0.9 582 0 0.00 593 0 0.00
lseu-0.1 0 1120 0.00 0 1120 0.00
lseu-0.5 3,600 2274 3.32 3,600 2313 7.63
lseu-0.9 73 5838 0.00 95 5838 0.00
p0033-0.1 0 3089 0.00 0 3089 0.00
p0033-0.5 0 3095 0.00 0 3095 0.00
p0033-0.9 0 4679 0.00 0 4679 0.00
p0201-0.1 3,600 12670 24.58 3,600 12465 20.90
p0201-0.5 1,588 13635 0.00 2,195 13635 0.00
p0201-0.9 4 15025 0.00 5 15025 0.00
p0282-0.1 7 260781 0.00 3 260781 0.00
p0282-0.5 3,600 272659 0.70 3,600 272659 0.93
p0282-0.9 3,600 615101 30.54 3,600 614837 28.85
p0548-0.1 3,600 11063 16.12 3,600 11086 16.85
p0548-0.5 3,600 - - 3,600 - -
p0548-0.9 3,600 49476 60.97 3,600 48942 60.25
p2756-0.1 3,600 14395 76.26 3,600 14550 77.07
p2756-0.5 3,600 23574 83.07 3,600 23547 83.05
p2756-0.9 3,600 33699 86.23 3,600 33362 86.12
l152lav-0.1 7 4722 0.00 7 4722 0.00
l152lav-0.5 3,600 4851 2.01 3,600 4817 1.27
l152lav-0.9 3,600 5171 7.86 3,600 5090 6.37
mod010-0.1 3 6554 0.00 5 6554 0.00
mod010-0.5 3,600 6689 1.87 3,600 6678 1.73
mod010-0.9 3,600 7604 13.71 3,600 7620 13.92
air03-0.1 3,600 386220 10.80 3,600 378890 8.96
air03-0.5 3,600 524198 33.30 3,600 513226 31.04
air03-0.9 3,600 819652 57.23 3,600 762132 53.18
air04-0.1 3,600 56400 0.20 3,600 56415 0.35
air04-0.5 3,600 61281 8.28 3,600 60725 7.45
air04-0.9 3,600 - - 3,600 - -
air05-0.1 848 26577 0.00 1,005 26577 0.00
air05-0.5 3,600 31693 16.61 3,600 32528 18.70
air05-0.9 3,600 42796 38.50 3,600 - -

fast0507-0.1 2 12484 0.00 1 12484 0.00
fast0507-0.5 1 61439 0.00 1 61439 0.00
fast0507-0.9 1 109916 0.00 1 109916 0.00
cap6000-0.1 433 -1967015 0.00 802 -1967015 0.00
cap6000-0.5 3,600 - - 3,600 - -
cap6000-0.9 3,600 - - 3,600 - -
mitre-0.1 3,600 - - 3,600 - -
mitre-0.5 3,600 - - 3,600 - -
mitre-0.9 3,600 - - 3,600 169470 31.95
nw04-0.1 904 17066 0.00 1,023 17066 0.00
nw04-0.5 3,600 26874 37.90 3,600 26396 37.08
nw04-0.9 3,600 52290 66.11 3,600 44026 59.80

seymour-0.1 3,600 476 1.50 3,600 476 1.33
seymour-0.5 1 807 0.00 1 807 0.00
seymour-0.9 0 1251 0.00 0 1251 0.00
harp2-0.1 3,600 -71920826 2.74 3,600 -72111431 2.45
harp2-0.5 3,600 - - 3,600 - -
harp2-0.9 3,600 162804 45544.93 3,600 -154337 47836.26
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C. Performance plots for BISP-KC

a. |V | “ 50, p “ 0.25

b. |V | “ 50, p “ 0.50
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c. |V | “ 50, p “ 0.75

d. |V | “ 100, p “ 0.25
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e. |V | “ 100, p “ 0.50

f. |V | “ 100, p “ 0.75
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g. |V | “ 200, p “ 0.25

h. |V | “ 200, p “ 0.50
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i. |V | “ 200, p “ 0.75

j. |V | “ 300, p “ 0.25
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k. |V | “ 300, p “ 0.50

l. |V | “ 300, p “ 0.75

Fig. C.1: Performance profiles for BISP-KC. Left x-axis shows running times
of solved instances in log scale, and right x-axis shows optimality gaps of
unsolved instances.
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