
An Introduction to
Decision Diagrams for Optimization

Willem-Jan van Hoeve

October 22, 2024 | Seattle, WA

Willem-Jan van Hoeve
Carnegie Bosch Professor of Operations Research

Tepper School of Business
Carnegie Mellon University

website url

David Bergman
Andre Cire
Willem-Jan van Hoeve
John Hooker

Springer, 2016

Decision Diagrams?

3

Graphical representation of
Boolean functions

f(x) = (x1 ⇔ x2) ∧ (x3 ⇔ x4)

x1 x2 x3 x4 f(x)
0 0 0 0 1
0 0 0 1 0
0 1 1 0 0
0 0 1 1 1
… … … … …

0
1

0 1

x1

x2

x3

x4

Decision Diagrams?

4

0
1

0 1

x1

x2

x3

x4

Graphical representation of
Boolean functions

f(x) = (x1 ⇔ x2) ∧ (x3 ⇔ x4)

x1 x2 x3 x4 f(x)
0 0 0 0 1
0 0 0 1 0
0 1 1 0 0
0 0 1 1 1
… … … … …

Decision Diagrams?

5

0
1

0 1

x1

x2

x3

x4

- BDD: binary decision diagram
- MDD: multi-valued decision diagram

Applications: Formal verification,
configuration problems, …

Graphical representation of
Boolean functions

f(x) = (x1 ⇔ x2) ∧ (x3 ⇔ x4)

Decision Diagrams: Optimization View

6

Optimization perspective:
- literals → variables
- arcs → assignments
- paths → solutions

Graphical representation of
Boolean functions

f(x) = (x1 ⇔ x2) ∧ (x3 ⇔ x4)

0
1

0 1

x1

x2

x3

x4

Decision Diagrams: Optimization View

max 2x1 + x2 - 4x3 + x4
subject to
	 x1 – x2 = 0
	 x3 – x4 = 0

	 x1, x2, x3, x4 {0,1} ∈

0
1

0 1

x1

x2

x3

x4

Decision Diagrams: Optimization View

max 2x1 + x2 - 4x3 + x4
subject to
	 x1 – x2 = 0
	 x3 – x4 = 0

	 x1, x2, x3, x4 {0,1} ∈

0
1

10

x1

x2

x3

x4

Decision Diagrams: Optimization View

9

max 2x1 + x2 - 4x3 + x4
subject to
	 x1 – x2 = 0
	 x3 – x4 = 0

	 x1, x2, x3, x4 {0,1} ∈

0
1

x1

x2

x3

x4

Decision Diagrams: Optimization View

10

Maximizing a linear (or separable) function:

- Arc lengths: contribution to the objective
- Longest path: optimal solution

(can also handle nonlinear functions)

0

0

0

0

2

1

-4

1

max 2x1 + x2 - 4x3 + x4
subject to
	 x1 – x2 = 0
	 x3 – x4 = 0

	 x1, x2, x3, x4 {0,1} ∈

0
1

x1

x2

x3

x4

Decision Diagrams: Optimization View

11

0
1

x1

x2

x3

x4

max 2x1 + x2 - 4x3 + x4
subject to
	 x1 – x2 = 0
	 x3 – x4 = 0

	 x1, x2, x3, x4 {0,1} ∈

Maximizing a linear (or separable) function:

- Arc lengths: contribution to the objective
- Longest path: optimal solution

(can also handle nonlinear functions)

0

0

0

0

2

1

-4

1

Branch-and-Bound Solver

(DALL-E, 2024)

Column Elimination

(DALL-E, 2024)

Constraint Programming

(Durer, 1514)

Integer Programming

(Escher, 1961)

Branch-and-Bound Solver

(DALL-E, 2024)

Column Elimination

(DALL-E, 2024)

Constraint Programming

(Durer, 1514)

Integer Programming

(Escher, 1961)

Example Application: Independent Set Problem

14

weight

Independent set in a graph:
• Subset of non-adjacent vertices
Maximum Independent Set Problem:
• Find independent set with

maximum weight

• Classical combinatorial optimization
problem (equivalent to maximum clique in
complement graph)

• Wide applications, ranging from scheduling
to social network analysis

C

D

B

E

A
5

8 6

2

4

Integer Programming Formulation

15

 max	 5xA + 4xB + 2xC + 6xD + 8xE
subject to	 xA + xB 1

	 	 	 xA + xE 1
	 	 	 xB + xC 1
	 	 	 xB + xD 1
	 	 	 xC + xD 1
	 	 	 xD + xE 1
	 	 	 xA, xB, xC, xD, xE {0,1}

≤
≤
≤
≤
≤
≤

∈

C

D

B

E

A
5

8 6

2

4

weight

Independent set in a graph:
• Subset of non-adjacent vertices
Maximum Independent Set Problem:
• Find independent set with

maximum weight

BDD Compilation for Maximum Independent Set

16

{C,D}

xA

xB

xC

xD

Merge equivalent nodes

{E} {D,E}
{D}∅ {E}

xE

{C,D}
{C,D,E}

{E}

{B,C,D,E}

{A,B,C,D,E}: 0
: 1

5 0

000 22

0
0 4

State: eligible vertices

C

D

B

E

A
5

8 6

2

4

BDD Compilation for Maximum Independent Set

{C,D}

xA

xB

xC

xD

{A,B,C,D,E}

{B,C,D,E}

{C,D}

{E}

{C,D,E}

{D,E}
{D}∅

{E}

∅ {E}

xE

∅

State: eligible vertices
: 0
: 1

Theorem: This top-down compilation
procedure generates a reduced exact BDD

[Bergman, Cire, vH, Hooker, IJOC 2014]

17

5 0

0

000

0

22

4

0000

00

6
6

8

Optimal solution: Longest path

C

D

B

E

A
5

8 6

2

4

BDD Compilation for Maximum Independent Set

18

Theorem: This top-down compilation
procedure generates a reduced exact BDD

[Bergman, Cire, vH, Hooker, IJOC 2014]

Optimal solution: Longest path

C

D

B

E

A
5

8 6

2

4

{C,D}

xA

xB

xC

xD

{A,B,C,D,E}

{B,C,D,E}

{C,D}

{E}

{C,D,E}

{D,E}
{D}∅

{E}

∅ {E}

xE

∅

State: eligible vertices
: 0
: 1

5 0

0

000

0

22

4

0000

00

6
6

8

Relaxed Decision Diagrams: Polynomial Size

• Limit the size of the diagram to a maximum width

• Merge non-equivalent nodes
− Define node merging rule to safely aggregate states

• Requirements for relaxation
1. Must represent a superset of exact solutions

2. The path costs are valid (w.r.t. exact solutions)

• Provides discrete relaxation
− Strength is controlled by the maximum width

19

width

[Andersen, Hadzic, Hooker, Tiedemann, CP 2007]
[Bergman, Cire, vH, Hooker, CPAIOR 2011, IJOC 2016]

Independent Set Problem: Relaxed DD

xA

xB

xC

xD

xE

{E} {D,E}{D}∅ {E}

{C,D}

{A,B,C,D,E}

{B,C,D,E}

{C,D} {C,D,E}{E}

: 0
: 1

Maximum width = 3

20

5 0

0

000

0

22

4

C

D

B

E

A
5

8 6

2

4

Independent Set Problem: Relaxed DD

xA

xB

xC

xD

xE

{D,E}
∅ {E}

{C,D}

{A,B,C,D,E}

{B,C,D,E}

{C,D} {C,D,E}{E}

: 0
: 1

21

5 0

0

000

0

22

4

Maximum width = 3

C

D

B

E

A
5

8 6

2

4

Independent Set Problem: Relaxed DD

xA

xB

xC

xD

xE

{D,E}
∅ {E}

{C,D}

{A,B,C,D,E}

{B,C,D,E}

{C,D} {C,D,E}{E}

∅ {E}

: 0
: 1

22

5 0

0

000

0

22

4

0

0 0

006

8

Maximum width = 3

C

D

B

E

A
5

8 6

2

4

Exact vs. Relaxed Decision Diagrams

xA

xB

xC

xD

xE

23

Relaxed
(width ≤ 3)

C

D

B

E

A
5

8 6

2

4Exact

Exact vs. Relaxed Decision Diagrams

(0,0,0,1,0)

xA

xB

xC

xD

xE

24

C

D

B

E

A
5

8 6

2

4

xA

xB

xC

xD

xE

Relaxed
(width ≤ 3)

Exact

Exact vs. Relaxed Decision Diagrams

25

C

D

B

E

A
5

8 6

2

4

xA

xB

xC

xD

xE

Relaxed
(width ≤ 3)

Exact

(1,0,0,0,1)

Exact vs. Relaxed Decision Diagrams

26

5 0

0

000

0

22

4

0000

00

6
6

8

5 0

0

0
00

0

22

4

06 00

0 08

C

D

B

E

A
5

8 6

2

4

xA

xB

xC

xD

xE

Relaxed
(width ≤ 3)

Exact

Exact vs. Relaxed Decision Diagrams

27

5 0

0

000

0

22

4

0000

00

6
6

8

5 0

0

0
00

0

22

4

06 00

0 08

C

D

B

E

A
5

8 6

2

4

xA

xB

xC

xD

xE

Relaxed
(width ≤ 3)

x = (0, 1, 0, 0, 1)

Solution value = 12

Exact

Exact vs. Relaxed Decision Diagrams

28

5 0

0

000

0

22

4

0000

00

6
6

8

5 0

0

0
00

0

22

4

06 00

0 08

C

D

B

E

A
5

8 6

2

4

xA

xB

xC

xD

xE

Relaxed
(width ≤ 3)

x = (1, 0, 0, 0, 1)

Upper bound = 13

Exact

Restricted Decision Diagrams

• Under-approximation of the feasible set

[Bergman, Cire, vH, Yunes, J Heur. 2014]

C

D

B

E

A
5

8 6

2

4

: 0
: 1

5 0

0

000

0

22

4

0000

00

6
6

8

xA

xB

xC

xD

xE

Maximum width = 3

Restricted Decision Diagrams

• Under-approximation of the feasible set

[Bergman, Cire, vH, Yunes, J Heur. 2014]

C

D

B

E

A
5

8 6

2

4

: 0
: 1

5 0

0

00

0

22

4

000

00

6
6

8

xA

xB

xC

xD

xE

0

0

Maximum width = 3

Restricted Decision Diagrams

31

x = (0, 1, 0, 0, 1)
Lower bound = 12

Maximum width = 3

[Bergman, Cire, vH, Yunes, J Heur. 2014]

• Under-approximation of the feasible set

C

D

B

E

A
5

8 6

2

4

5 0

0

00

0

22

4

000

00

6
6

8

xA

xB

xC

xD

xE

: 0
: 1

Exact Search Method

• Branch-and-bound scheme based on decision diagrams

− Dual bounds: Relaxed decision diagrams

− Primal bounds: Restricted decision diagrams

− Branching is done on the nodes of the diagram

32

[Bergman, Cire, vH, Hooker, IJOC 2016]

Branch and Bound

33

xA

xB

xC

xD

xE

Last Exact Layer

Bound = 13

Relaxed BDD (width ≤ 3)

C

D

B

E

A
5

8 6

2

4

Node Queue

34

{C,D} {C,D,E}{E}5 4 0

Bound = 13

Q: Upper bound = 13

xA

xB

xC

xD

xE

{C,D}

{A,B,C,D,E}

{B,C,D,E}

Relaxed BDD (width ≤ 3)

Last Exact Layer

C

D

B

E

A
5

8 6

2

4

Node Queue

35

Q:
{C,D,E}{E}{C,D} 5 4 0

Exact solution: 11

xC

xD

{C,D} 5

Exact solution: 12

{E} 4

Exact solution: 10

xC

xD

xE

{C,D,E}0

Upper bound = 13

Optimal solution: 12

xE

C

D

B

E

A
5

8 6

2

4

Maximum Independent Set: 500 variables

36

Average percent optimality gap
(random instances) with 1h time limit

Maximum Independent Set: 1500 variables

37

Average percent optimality gap
(random instances) with 1h time limit

Maximum Cut Problem: BiqMac vs BDD

38

Branch-and-Bound Solver

(DALL-E, 2024)

Column Elimination

(DALL-E, 2024)

Constraint Programming

(Durer, 1514)

Integer Programming

(Escher, 1961)

Constraint Programming = Propagate (+ Search)

• Constraint propagation algorithm for individual constraints

− remove inconsistent values from variable domains

− propagate updated domains to other constraints

40

x1 > x2

x1 + x2 = x3

alldifferent (x1, x2, x3, x4)

x1 ∈ {1,2,3}, x2 ∈ {1,2,3,4}, x3 ∈ {2,3}, x4 ∈ {2,3,4}

Constraint Programming = Propagate (+ Search)

• Constraint propagation algorithm for individual constraints

− remove inconsistent values from variable domains

− propagate updated domains to other constraints

41

x1 > x2

x1 + x2 = x3

alldifferent (x1, x2, x3, x4)

x1 ∈ {2}, x2 ∈ {1}, x3 ∈ {3}, x4 ∈ {4}

Domain propagation has
its limitations however

Propagate Decision Diagrams!

42

alldifferent (x1, x2, x3, x4)
x1 + x2 + x3 ≥ 9

xi ∈ {1,2,3,4} (i = 1,2,3,4)

256 solutions

domain
relaxation

24 solutions

propagate
alldifferent

6 solutions

propagate
x1 + x2 + x3 ≥ 9

[Andersen, Hadzic, Hooker, Tiedemann, 2007]

Optimization
- Evaluate objective to retrieve dual bound

Propagate decision diagrams
- Remove inconsistent arcs from diagram
- Use relaxed diagrams of polynomial size

Example Application: Disjunctive Scheduling

• Activities
− Processing time: pi

− Release time: ri

− Deadline: di

• Resource
− Nonpreemptive

− Process one activity at a time
• Objective

− Minimize makespan, sum of completion times, tardiness, …

• Optional side constraints
− Precedence constraints, sequence-dependent setup times, …

43

Activity 1

Activity 2

Activity 3

0 1 2 3 4

Decision Diagram: Solution = Permutation

44

3

 2

1

1 2

Act ri pi di

1 3 4 12

2 0 3 11

3 1 2 10

Path 3 – 2 – 1 :

6 ≤ start1 ≤ 8

3 ≤ start2 ≤ 5

1 ≤ start3 ≤ 3

 3

 2

precedence: 3 1≪

Solution: sequence of activities π1, π2, …, πn

π1

π2

π3

MDD-Based Propagation

Propagation: remove infeasible arcs from the MDD

We can utilize several structures/constraints:
• Alldifferent for the permutation structure

• Earliest start time and latest end time

• Precedence relations

For each constraint type we maintain specific state information at each node
in the MDD (both from top down and bottom up)

Bounding: Evaluate the objective function (longest/shortest path)

45

32

3 12

1 2

3
13

2

31
2

1

Top-down MDD compilation: Example

46

π1

π2

π3

2precedence:
3 1≪

32 32

3 12

exact MDDrelaxed MDDs
(strength is controlled by

maximum width)

3

1 32

1 32

3 1
2

1 32 1
2

Top-down MDD compilation: Example

47

π1

π2

π3

2 32 32

3 12

3

1 32

1 32

3 1
2

1 32 1
2

precedence:
3 1≪

Top-down MDD compilation: Example

48

π1

π2

π3

2 32 32

3 12

3

1 32

1 32

3 1
2

1 32 1
2

minimize makespan: lower bound = 7 lower bound = 7 optimum = 9

precedence:
3 1≪

Act ri pi di

1 3 4 12

2 0 3 11

3 1 2 10

Sequencing and Scheduling Applications

49

TSP with Time Windows
- 20-60 cities (Dumas/Ascheuer instances)
- max MDD width: 16
Compare MDD with CP Optimizer

Sequential Ordering Problem (TSPLib)
- TSP + precedence constraints
- max MDD width: 2048
Closed 3 instances for the first time [Cire&vH 2013]

Branch-and-Bound Solver

(DALL-E, 2024)

Column Elimination

(DALL-E, 2024)

Constraint Programming

(Durer, 1514)

Integer Programming

(Escher, 1961)

Representing Integer Feasible Sets

51

Integer Program
Representation

Feasible Set as
Decision Diagram

Network Flow +
Mapping

Theorem [Behle07]: Projecting the decision diagram network flow
reformulation back to the original space yields the convex hull.

Applications to Integer Programming

1. Reformulate (non-linear) components as decision diagram, and add the
network flow model to the integer program

- Quadratic objectives [BergmanCire18], quadratic constraints [BergmanLozano21]

2. Use (relaxed) decision diagrams to represent (part of) the model to
generate cutting planes

- Integer linear programs: [Behle+05] [Behle07] [TjandraatmadjaVH19]

- Integer nonlinear programs: [DavarniaVH21] [Castro+22]

3. Use (relaxed) decision diagrams to compute dual bounds within the
branch-and-bound search tree	 	 [TjandraatmadjaVH21]

52

Decision Diagram Bounds in Integer Programming

• Integration Design

− Compile relaxed decision diagram for conflict graph in IP solver

− Strengthen diagram by constraint propagation and Lagrangian bound

• Implemented in SCIP 5.0.1

− Only IP model is given to solver

− DD compiled automatically at each search node

• Experimental Setup

− Independent set problem on random graphs

− Add set of random knapsack constraints

53

[TjandraatmadjaVH21]

Decision Diagrams Can Speed Up IP Solvers

On average:	 65.5% node reduction
	 	 	 	 1.59x speedup

54

Instances: Watts-Strogatz random graphs
n = 300, 350, 400, 450 vertices
m = 0.1n knapsack constraints

Branch-and-Bound Solver

(DALL-E, 2024)

Column Elimination

(DALL-E, 2024)

Constraint Programming

(Durer, 1514)

Integer Programming

(Escher, 1961)

From Column Generation to Column Elimination

56

Min cTx s.t.

…

The pricing problem is often relaxed and solved with a smaller dynamic program.

x ≥ b

x ∊ {0,1}n

Column Generation Model

From Column Generation to Column Elimination

57

Column Elimination ModelColumn Generation Model
Min cTx s.t. Min cTx s.t.

The pricing problem is often relaxed and solved with a smaller dynamic program.

x ≥ b

x ≥ b

x ∊ {0,1}n

Could we use the smaller dynamic program to directly model a relaxation of the IP?

Example: Graph Coloring

• Assign a color to each vertex such that adjacent vertices
have a different color. Minimize the number of colors.

• MIP model: binary variable xi for each independent set i

• Comparatively strong LP relaxation

58

1 2

3 4

1 2

3 4

Drawback: I has exponential size

I = { {1},{2},{3},{4},
{1,2},{1,4},{2,3} }

Decision Diagram Represents All Independent Sets

59

1 2

3 4

• We know how to compile these!

• Each r-t path corresponds to an
independent set

• Compact representation, but
still exponential in general

Reformulating the MIP Model as Arc Flow Model

60

Integer variable ya : ‘flow’ through arc a

minimize number of paths (colors)

one 1-arc per vertex

‘flow conservation’

integrality

Column Elimination: Iterative Refinement

61

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1
1

1 1

1 11

1

1

1

1

1

1

1

Optimal!input graph

Evaluation on DIMACS Benchmark Instances

Size of Exact DD

Si
ze

 o
f R

el
ax

ed
 D

D

• Relaxed decision diagram from
column elimination can be orders
of magnitude smaller than exact
decision diagram to prove
optimality, but not always

• DSJR500.1 (n=500, m=3,555)
− Exact DD: ≥1M nodes
− Relaxed DD: 627 nodes

62

(Each instance is solved to optimality by at least one of the two methods)

Column Elimination Algorithm

63

LP

IP

Column Elimination Can Provide State-of-the-Art Results

• Vehicle Routing Problem with Time Windows

− For some instances column elimination finds better bounds than VRPSolver [Pessoa+20]

− Column Elimination closes open instance C2_10_1 on 1,000 locations

• Graph Multi-Coloring Problem

− Column Elimination closes five open benchmark instances

• Pickup-and-Delivery Problem with Time Windows

− Column Elimination closes six open benchmark instances

64

[KarahaliosVH, under review]

Branch-and-Bound Solver

Column Elimination

Constraint Programming

Integer Programming

