An Introduction to Decision Diagrams for Optimization

Willem-Jan van Hoeve

October 22, 2024 | Seattle, WA

**Carnegie
Mellon
University**

Willem-Jan van Hoeve

Carnegie Bosch Professor of Operations Research Tepper School of Business Carnegie Mellon University

David Ber Andre A. Cir Willem-Jan van Hoeve John Hooker

Decision Diagrams for Optimization

Intificial Intelligence: Foundations, Theory, and Algority

website url

David Bergman Andre Cire Willem-Jan van Hoeve John Hooker

 $\underline{\mathcal{D}}$ Springer

Springer, 2016

-
-

Decision Diagrams?

Graphical representation of Boolean functions

$$
f(x) = (x_1 \Leftrightarrow x_2) \wedge (x_3 \Leftrightarrow x_4)
$$

Decision Diagrams?

4

Graphical representation of Boolean functions

$$
f(x) = (x_1 \Leftrightarrow x_2) \wedge (x_3 \Leftrightarrow x_4)
$$

Decision Diagrams?

- BDD: binary decision diagram
- MDD: multi-valued decision diagram

Applications: Formal verification, configuration problems, …

Graphical representation of Boolean functions

$f(x) = (x_1 \Leftrightarrow x_2) \wedge (x_3 \Leftrightarrow x_4)$

Optimization perspective:

- literals → variables
- $-$ arcs \rightarrow assignments
- paths → solutions

Decision Diagrams: Optimization View

Graphical representation of Boolean functions

$f(x) = (x_1 \Leftrightarrow x_2) \wedge (x_3 \Leftrightarrow x_4)$


```
max 2x_1 + x_2 - 4x_3 + x_4subject to 
 x_1 - x_2 = 0x_3 - x_4 = 0x_1, x_2, x_3, x_4 \in \{0, 1\}
```


max $2x_1 + x_2 - 4x_3 + x_4$ subject to $x_1 - x_2 = 0$ $x_3 - x_4 = 0$ $x_1, x_2, x_3, x_4 \in \{0, 1\}$

max $2x_1 + x_2 - 4x_3 + x_4$ subject to $x_1 - x_2 = 0$ $x_3 - x_4 = 0$ $x_1, x_2, x_3, x_4 \in \{0, 1\}$

max $2x_1 + x_2 - 4x_3 + x_4$ subject to $x_1 - x_2 = 0$ $x_3 - x_4 = 0$ $x_1, x_2, x_3, x_4 \in \{0, 1\}$

Maximizing a linear (or separable) function:

- Arc lengths: contribution to the objective
- Longest path: optimal solution (can also handle nonlinear functions)

max $2x_1 + x_2 - 4x_3 + x_4$ subject to $x_1 - x_2 = 0$ $x_3 - x_4 = 0$ $x_1, x_2, x_3, x_4 \in \{0, 1\}$

11

Maximizing a linear (or separable) function:

- Arc lengths: contribution to the objective
- Longest path: optimal solution (can also handle nonlinear functions)

Branch-and-Bound Solver

(DALL-E, 2024)

Column Elimination

(DALL-E, 2024)

Constraint Programming

(Durer, 1514)

Integer Programming

(Escher, 1961)

Branch-and-Bound Solver

(DALL-E, 2024)

Column Elimination

(DALL-E, 2024)

Constraint Programming

(Durer, 1514)

Integer Programming

(Escher, 1961)

Example Application: Independent Set Problem

Independent set in a graph:

Find independent set with maximum weight

• Subset of non-adjacent vertices

Maximum Independent Set Problem:

- Classical combinatorial optimization problem (equivalent to maximum clique in complement graph)
- Wide applications, ranging from scheduling to social network analysis

Integer Programming Formulation

Independent set in a graph:

• Subset of non-adjacent vertices

Maximum Independent Set Problem:

• Find independent set with maximum weight

max $5x_A + 4x_B + 2x_C + 6x_D + 8x_F$ subject to $x_A + x_B \le 1$ $x_A + x_E \leq 1$ $x_B + x_C \leq 1$ $x_B + x_D \leq 1$ $x_C + x_D \leq 1$ $x_D + x_E \leq 1$ x_A , x_B , x_C , x_D , $x_E \in \{0, 1\}$

BDD Compilation for Maximum Independent Set

Merge equivalent nodes

 X_E

State: eligible vertices

BDD Compilation for Maximum Independent Set

State: eligible vertices

Theorem: This top-down compilation procedure generates a reduced exact BDD [Bergman, Cire, vH, Hooker, IJOC 2014]

Optimal solution: Longest path

BDD Compilation for Maximum Independent Set

Theorem: This top-down compilation procedure generates a reduced exact BDD [Bergman, Cire, vH, Hooker, IJOC 2014]

Optimal solution: Longest path

State: eligible vertices

Relaxed Decision Diagrams: Polynomial Size

- Limit the size of the diagram to a maximum width
- Merge non-equivalent nodes − Define *node merging rule* to safely aggregate states
- Requirements for relaxation 1. Must represent a superset of exact solutions 2. The path costs are valid (w.r.t. exact solutions)
- Provides discrete relaxation
	- − Strength is controlled by the maximum width

19

Independent Set Problem: Relaxed DD

 X_E

Independent Set Problem: Relaxed DD

 X_E

Independent Set Problem: Relaxed DD

 $x = (0, 1, 0, 0, 1)$ Solution value = 12

 $x = (1, 0, 0, 0, 1)$ Upper bound = 13

Restricted Decision Diagrams

• Under-approximation of the feasible set

[Bergman, Cire, vH, Yunes, J Heur. 2014]

Restricted Decision Diagrams

• Under-approximation of the feasible set

[Bergman, Cire, vH, Yunes, J Heur. 2014]

Restricted Decision Diagrams

[Bergman, Cire, vH, Yunes, J Heur. 2014]

Maximum width = 3

 $x = (0, 1, 0, 0, 1)$ Lower bound = 12

• Under-approximation of the feasible set

Exact Search Method

- Branch-and-bound scheme based on decision diagrams
	- − Dual bounds: Relaxed decision diagrams
	- − Primal bounds: Restricted decision diagrams
	- − Branching is done on the *nodes* of the diagram

[Bergman, Cire, vH, Hooker, IJOC 2016]

Branch and Bound

Relaxed BDD (width \leq 3)

Last Exact Layer

Node Queue

Last Exact Layer

Node Queue

Exact solution: 11

Exact solution: 12

Exact solution: 10

Upper bound = 13

Optimal solution: 12

Maximum Independent Set: 500 variables

Maximum Independent Set: 1500 variables

Maximum Cut Problem: BiqMac vs BDD

Branch-and-Bound Solver

(DALL-E, 2024)

Column Elimination

(DALL-E, 2024)

Constraint Programming

(Durer, 1514)

Integer Programming

(Escher, 1961)

Constraint Programming = Propagate (+ Search)

- Constraint propagation algorithm for individual constraints
	- − remove inconsistent values from variable domains
	- − propagate updated domains to other constraints

$$
(x_1 > x_2)
$$

\n
$$
(x_1 + x_2 = x_3)
$$

\n*alldifferent* (x₁, x₂, x₃, x₄)
\n
$$
x_1 \in \{\cancel{1}, 2, \cancel{1}, x_2 \in \{1, \cancel{1}, \cancel{1}, \cancel{1}, x_3 \in
$$

 $\{\vec{1},3\}, x_4 \in \{\vec{1},\vec{3},4\}$

Constraint Programming = Propagate (+ Search)

- Constraint propagation algorithm for individual constraints
	- − remove inconsistent values from variable domains
	- − propagate updated domains to other constraints

 $x_1 > x_2$ $x_1 + x_2 = x_3$ *alldifferent* (x_1, x_2, x_3, x_4) $x_1 \in \{2\}, x_2 \in \{1\}, x_3 \in \{3\}, x_4 \in \{4\}$

Domain propagation has its limitations however

Propagate Decision Diagrams!

alldifferent
$$
(x_1, x_2, x_3, x_4)
$$

\n $x_1 + x_2 + x_3 \ge 9$
\n $x_i \in \{1, 2, 3, 4\}$ $(i = 1, 2, 3, 4)$

- Remove inconsistent arcs from diagram
- Use relaxed diagrams of polynomial size

[Andersen, Hadzic, Hooker, Tiedemann, 2007]

Optimization

Evaluate objective to retrieve dual bound

Propagate decision diagrams

Example Application: Disjunctive Scheduling

- Activities
	- − Processing time: pi
	- − Release time: ri
	- − Deadline: di
- Resource
	- − Nonpreemptive
	- − Process one activity at a time
- Objective
	- − Minimize makespan, sum of completion times, tardiness, …
- Optional side constraints
	- − Precedence constraints, sequence-dependent setup times, …

Decision Diagram: Solution = Permutation

precedence: 3 ≪ 1

Solution: sequence of activities $\pi_1, \pi_2, ..., \pi_n$

MDD-Based Propagation

Propagation: remove infeasible arcs from the MDD

We can utilize several structures/constraints:

- *• Alldifferent* for the permutation structure
- Earliest start time and latest end time
- Precedence relations

- For each constraint type we maintain specific state information at each node
	-

in the MDD (both from top down and bottom up)

Bounding: Evaluate the objective function (longest/shortest path)

-
-

Top-down MDD compilation: Example

precedence: π ¹/2 ≪ 1

Top-down MDD compilation: Example

precedence: ≪ 1

Top-down MDD compilation: Example

Sequencing and Scheduling Applications

49

TSP with Time Windows

- 20-60 cities (Dumas/Ascheuer instances)
- max MDD width: 16
- Compare MDD with CP Optimizer

Sequential Ordering Problem (TSPLib)

- TSP + precedence constraints
- max MDD width: 2048

Closed 3 instances for the first time [Cire&vH 2013]

Branch-and-Bound Solver

(DALL-E, 2024)

Column Elimination

(DALL-E, 2024)

Constraint Programming

(Durer, 1514)

Integer Programming

(Escher, 1961)

Representing Integer Feasible Sets

Integer Program Representation

Feasible Set as Decision Diagram Network Flow + Mapping

Theorem [Behle07]: Projecting the decision diagram network flow reformulation back to the original space yields the convex hull.

 $y_1 + y_2 = 1$ $y_1 = y_3 + y_4$ $y_2=y_5$ $y_3 = y_6 + y_7$ $y_4 + y_5 = y_8$ $y_6 + y_7 + y_8 = 1$ $0 \leq y_i \leq 1, i \in \{1, \ldots, 8\}$ $x_1 = 0y_1 + 1y_2$ $x_2 = 0y_3 + 1y_4 + 0y_5$ $x_3 = 0y_6 + 1y_7 + 0y_8$

Applications to Integer Programming

- 1. Reformulate (non-linear) components as decision diagram, and add the network flow model to the integer program
	- Quadratic objectives [BergmanCire18], quadratic constraints [BergmanLozano21]
- 2. Use (relaxed) decision diagrams to represent (part of) the model to generate cutting planes
	-
	- Integer linear programs: [Behle+05] [Behle07] [TjandraatmadjaVH19] - Integer nonlinear programs: [DavarniaVH21] [Castro+22]
- 3. Use (relaxed) decision diagrams to compute dual bounds within the branch-and-bound search tree [TjandraatmadjaVH21]

Decision Diagram Bounds in Integer Programming

- Integration Design
	- − Compile relaxed decision diagram for *conflict graph* in IP solver
	- − Strengthen diagram by constraint propagation and Lagrangian bound
- Implemented in SCIP 5.0.1
	- − Only IP model is given to solver
	- − DD compiled automatically at each search node
- Experimental Setup
	- − Independent set problem on random graphs
	- − Add set of random knapsack constraints

[TjandraatmadjaVH21]

On average: 65.5% node reduction 1.59x speedup

Decision Diagrams Can Speed Up IP Solvers

Instances: Watts-Strogatz random graphs n = 300, 350, 400, 450 vertices m = 0.1n knapsack constraints

Branch-and-Bound Solver

(DALL-E, 2024)

Column Elimination

(DALL-E, 2024)

Constraint Programming

(Durer, 1514)

Integer Programming

(Escher, 1961)

From Column Generation to Column Elimination

Min c^Tx s.t. Column Generation Model

The pricing problem is often relaxed and solved with a smaller dynamic program.

From Column Generation to Column Elimination

Column Generation Model Column Elimination Model Min c^Tx s.t. Min c^Tx s.t.

The pricing problem is often relaxed and solved with a smaller dynamic program.

Could we use the smaller dynamic program to directly model a relaxation of the IP?

Example: Graph Coloring

- Assign a color to each vertex such that adjacent vertices have a different color. Minimize the number of colors.
- MIP model: binary variable x_i for each independent set i
- Comparatively strong LP relaxation

$$
\begin{aligned}\n\min \quad & \sum_{i \in I} x_i \\
\text{s.t.} \quad & \sum_{i \in I} a_{ij} x_i = 1 \quad \forall j \in V \\
& x_i \in \{0, 1\} \qquad \forall i \in I\n\end{aligned}
$$

 $I = \{ \{1\}, \{2\}, \{3\}, \{4\}, \}$ $\{1,2\},\{1,4\},\{2,3\}$ }

Drawback: *I* has exponential size

Decision Diagram Represents All Independent Sets

- We know how to compile these!
- Each r-t path corresponds to an independent set
- Compact representation, but still exponential in general

Reformulating the MIP Model as Arc Flow Model

Column Elimination: Iterative Refinement

 $(1,1,0,0)$ $(0,0,1,1)$
 $(3,4)$

 $(1,0,0,1)$ $(0,1,1,0)$

Evaluation on DIMACS Benchmark Instances

• Relaxed decision diagram from column elimination can be orders of magnitude smaller than exact decision diagram to prove optimality, but not always

• DSJR500.1 (*n*=500, *m*=3,555)

- − Exact DD: ≥1M nodes
- − Relaxed DD: 627 nodes

1000000

(Each instance is solved to optimality by at least one of the two methods)

Column Elimination Algorithm

Figure 2 Column elimination for solving F .

Column Elimination Can Provide State-of-the-Art Results

- Vehicle Routing Problem with Time Windows
	-
	- − For some instances column elimination finds better bounds than VRPSolver [Pessoa+20] − Column Elimination closes open instance C2_10_1 on 1,000 locations
- Graph Multi-Coloring Problem
	- − Column Elimination closes five open benchmark instances
- Pickup-and-Delivery Problem with Time Windows
	- − Column Elimination closes six open benchmark instances

[KarahaliosVH, under review]

Branch-and-Bound Solver

Integer Programming

Column Elimination

 \boldsymbol{x}_3

 θ

Constraint Programming

