An Introduction to **Decision Diagrams for Optimization**

Willem-Jan van Hoeve

October 22, 2024 | Seattle, WA

Carnegie Mellon University

Willem-Jan van Hoeve

Carnegie Bosch Professor of Operations Research Tepper School of Business Carnegie Mellon University

David Berg Andre A. Cir Willem-Jan van Hoeve John Hooker

Decision **Diagrams** for Optimization

Artificial Intelligence: Foundations, Theory, and Algori

David Bergman Andre Cire Willem-Jan van Hoeve John Hooker

🖄 Springer

Springer, 2016

website url

Decision Diagrams?

Graphical representation of **Boolean functions**

$$f(x) = (x_1 \Leftrightarrow x_2) \land (x_3 \Leftrightarrow x_4)$$

f(x)	x ₄	X ₃	X ₂	x_1
1	0	0	0	0
0	1	0	0	0
0	0	1	1	0
1	1	1	0	0
•••	•••	•••	•••	•••

Decision Diagrams?

Graphical representation of **Boolean functions**

$$f(x) = (x_1 \Leftrightarrow x_2) \land (x_3 \Leftrightarrow x_4)$$

f(x)	x ₄	X 3	x ₂	x_1
1	0	0	0	0
0	1	0	0	0
0	0	1	1	0
1	1	1	0	0
•••	• • •	•••		

Decision Diagrams?

Graphical representation of **Boolean functions**

$f(x) = (x_1 \Leftrightarrow x_2) \land (x_3 \Leftrightarrow x_4)$

- BDD: binary decision diagram
- MDD: multi-valued decision diagram

Applications: Formal verification, configuration problems, ...

Graphical representation of **Boolean functions**

$f(x) = (x_1 \Leftrightarrow x_2) \land (x_3 \Leftrightarrow x_4)$

Optimization perspective:

- literals \rightarrow variables
- arcs → assignments
- paths \rightarrow solutions

max $2x_1 + x_2 - 4x_3 + x_4$ subject to $x_1 - x_2 = 0$ $x_3 - x_4 = 0$ $x_1, x_2, x_3, x_4 \in \{0, 1\}$

2

max $2x_1 + x_2 - 4x_3 + x_4$ subject to $x_1 - x_2 = 0$ $x_3 - x_4 = 0$ $x_1, x_2, x_3, x_4 \in \{0, 1\}$

2

max $2x_1 + x_2 - 4x_3 + x_4$ subject to $x_1 - x_2 = 0$ $x_3 - x_4 = 0$ $x_1, x_2, x_3, x_4 \in \{0, 1\}$

max $2x_1 + x_2 - 4x_3 + x_4$ subject to $x_1 - x_2 = 0$ $x_3 - x_4 = 0$ $x_1, x_2, x_3, x_4 \in \{0, 1\}$

Maximizing a linear (or separable) function:

- Arc lengths: contribution to the objective
- Longest path: optimal solution (can also handle nonlinear functions)

max $2x_1 + x_2 - 4x_3 + x_4$ subject to $x_1 - x_2 = 0$ $x_3 - x_4 = 0$ $x_1, x_2, x_3, x_4 \in \{0, 1\}$

Maximizing a linear (or separable) function:

- Arc lengths: contribution to the objective
- Longest path: optimal solution (can also handle nonlinear functions)

11

(DALL-E, 2024)

Branch-and-Bound Solver

(Escher, 1961)

Integer Programming

(Durer, 1514)

Constraint Programming

Column Elimination

(DALL-E, 2024)

(DALL-E, 2024)

Branch-and-Bound Solver

(Escher, 1961)

Integer Programming

(Durer, 1514)

Constraint Programming

Column Elimination

(DALL-E, 2024)

Example Application: Independent Set Problem

Independent set in a graph:

- Subset of non-adjacent vertices \bullet Maximum Independent Set Problem:
- Find independent set with maximum weight

- Classical combinatorial optimization problem (equivalent to maximum clique in complement graph)
- Wide applications, ranging from scheduling to social network analysis

Integer Programming Formulation

Independent set in a graph:

- Subset of non-adjacent vertices
- Maximum Independent Set Problem:
- Find independent set with maximum weight

max $5x_{A} + 4x_{B} + 2x_{C} + 6x_{D} + 8x_{F}$ subject to $x_A + x_B \le 1$ $x_A + x_F \leq 1$ $x_{B} + x_{C} \leq 1$ $x_{B} + x_{D} \leq 1$ $x_{\rm C} + x_{\rm D} \leq 1$ $x_D + x_F \leq 1$ $x_A, x_B, x_C, x_D, x_E \in \{0, 1\}$

BDD Compilation for Maximum Independent Set

 \mathbf{X}_{E}

Merge equivalent nodes

State: eligible vertices

BDD Compilation for Maximum Independent Set

State: eligible vertices

Theorem: This top-down compilation procedure generates a reduced exact BDD [Bergman, Cire, vH, Hooker, IJOC 2014]

Optimal solution: Longest path

BDD Compilation for Maximum Independent Set

State: eligible vertices

Theorem: This top-down compilation procedure generates a reduced exact BDD [Bergman, Cire, vH, Hooker, IJOC 2014]

Optimal solution: Longest path

Relaxed Decision Diagrams: Polynomial Size

- Limit the size of the diagram to a maximum width
- Merge non-equivalent nodes - Define node merging rule to safely aggregate states
- Requirements for relaxation 1. Must represent a superset of exact solutions 2. The path costs are valid (w.r.t. exact solutions)
- Provides discrete relaxation
 - Strength is controlled by the maximum width

19

Independent Set Problem: Relaxed DD

X_E

Independent Set Problem: Relaxed DD

X_E

Independent Set Problem: Relaxed DD

x = (0, 1, 0, 0, 1) Solution value = 12

x = (1, 0, 0, 0, 1)Upper bound = 13

Restricted Decision Diagrams

Under-approximation of the feasible set

[Bergman, Cire, vH, Yunes, J Heur. 2014]

Restricted Decision Diagrams

Under-approximation of the feasible set

[Bergman, Cire, vH, Yunes, J Heur. 2014]

Restricted Decision Diagrams

Under-approximation of the feasible set

[Bergman, Cire, vH, Yunes, J Heur. 2014]

Maximum width = 3

x = (0, 1, 0, 0, 1)Lower bound = 12

Exact Search Method

- Branch-and-bound scheme based on decision diagrams
 - Dual bounds: Relaxed decision diagrams ____
 - Primal bounds: Restricted decision diagrams
 - Branching is done on the *nodes* of the diagram

[Bergman, Cire, vH, Hooker, IJOC 2016]

32

Branch and Bound

Relaxed BDD (width \leq 3)

Last Exact Layer

Node Queue

Relaxed BDD (width pp) r bound = 13

Last Exact Layer

Node Queue

Exact solution: 11

Exact solution: 12

Upper bound = 13

Exact solution: 10

Optimal solution: 12

Maximum Independent Set: 500 variables

Maximum Independent Set: 1500 variables

Maximum Cut Problem: BiqMac vs BDD

	BiqMac		BDD		Best known (2015)	
instance	LB	UB	LB	UB	LB	UB
g50	5880	5988.18	5880	5899*	5880	5988.18
g32	1390	1567.65	1410*	1645	1398	1560
g33	1352	1544.32	1380*	1536*	1376	1537
g34	1366	1546.70	1376*	1688	1372	1541
g11	558	629.17	564	567*	564	627
g12	548	623.88	556	616*	556	621
g13	578	647.14	580	652	580	645

(DALL-E, 2024)

Branch-and-Bound Solver

(Escher, 1961)

Integer Programming

(Durer, 1514)

Constraint Programming

(DALL-E, 2024)

Column Elimination

Constraint Programming = Propagate (+ Search)

- Constraint propagation algorithm for individual constraints
 - remove inconsistent values from variable domains
 - propagate updated domains to other constraints

$$\begin{array}{l} x_1 > x_2 \\ x_1 + x_2 = x_3 \\ \hline all different(x_1, x_2, x_3, x_4) \\ x_1 \in \{1, 2, 3\}, x_2 \in \{1, 2, 3, 4\}, x_3 \in \end{array}$$

 $\{2,3\}, x_4 \in \{2,3,4\}$

Constraint Programming = Propagate (+ Search)

- Constraint propagation algorithm for individual constraints
 - remove inconsistent values from variable domains —
 - propagate updated domains to other constraints

 $x_1 > x_2$ $x_1 + x_2 = x_3$ $all different(x_1, x_2, x_3, x_4)$ $x_1 \in \{2\}, x_2 \in \{1\}, x_3 \in \{3\}, x_4 \in \{4\}$

Domain propagation has its limitations however

Propagate Decision Diagrams!

$$all different(x_1, x_2, x_3, x_4)$$
$$x_1 + x_2 + x_3 \ge 9$$
$$x_i \in \{1, 2, 3, 4\} \quad (i = 1, 2, 3, 4)$$

Propagate decision diagrams

- Remove inconsistent arcs from diagram
- Use relaxed diagrams of polynomial size

[Andersen, Hadzic, Hooker, Tiedemann, 2007]

Optimization

- Evaluate objective to retrieve dual bound

Example Application: Disjunctive Scheduling

- Activities
 - Processing time: p_i
 - Release time: r_i
 - Deadline: d_i
- Resource
 - Nonpreemptive
 - Process one activity at a time
- Objective
 - Minimize makespan, sum of completion times, tardiness, ...
- Optional side constraints
 - Precedence constraints, sequence-dependent setup times, ...

Decision Diagram: Solution = Permutation

Act	r _i	p i	d _i
1	3	4	12
2	0	3	11
3	1	2	10

precedence: $3 \ll 1$

Solution: sequence of activities $\pi_1, \pi_2, ..., \pi_n$

MDD-Based Propagation

Propagation: remove infeasible arcs from the MDD

We can utilize several structures/constraints:

- Alldifferent for the permutation structure
- Earliest start time and latest end time \bullet
- Precedence relations

in the MDD (both from top down and bottom up)

Bounding: Evaluate the objective function (longest/shortest path)

- For each constraint type we maintain specific state information at each node

Top-down MDD compilation: Example

precedence: $3 \ll 1$

exact MDD

Top-down MDD compilation: Example

precedence: $3 \ll 1$

Top-down MDD compilation: Example

minimize makespan:

Sequencing and Scheduling Applications

TSP with Time Windows

- 20-60 cities (Dumas/Ascheuer instances)
- max MDD width: 16
- Compare MDD with CP Optimizer

			(CPO		width
instance	vertices	bounds	best	time (s)	\mathbf{best}	tin
br17.10	17	55	55	0.01	55	
br17.12	17	55	55	0.01	55	
$\mathrm{ESC07}$	7	2125	2125	0.01	2125	
$\mathrm{ESC25}$	25	1681	1681	TL	1681	
p43.1	43	28140	28205	TL	28140	2
p43.2	43	[28175, 28480]	28545	TL	28480	2
p43.3	43	[28366, 28835]	28930	TL	28835	17
p43.4	43	83005	83615	TL	83005	
ry48p.1	48	[15220, 15805]	18209	TL	16561	
ry48p.2	48	[15524, 16666]	18649	TL	17680	
ry48p.3	48	[18156, 19894]	23268	TL	22311	
ry48p.4	48	[29967, 31446]	34502	TL	31446	ę
ft53.1	53	[7438, 7531]	9716	TL	9216	
ft 53.2	53	[7630, 8026]	11669	TL	11484	
ft 53.3	53	[9473, 10262]	12343	TL	11937	
ft 53.4	53	14425	16018	TL	14425	1

Sequential Ordering Problem (TSPLib)

- TSP + precedence constraints
- max MDD width: 2048

Closed 3 instances for the first time

[Cire&vH 2013]

49

(DALL-E, 2024)

Branch-and-Bound Solver

(Escher, 1961)

Integer Programming

Constraint Programming

Column Elimination

(DALL-E, 2024)

Representing Integer Feasible Sets

Integer Program Representation Feasible Set as Decision Diagram

Theorem [Behle07]: Projecting the decision diagram network flow reformulation back to the original space yields the convex hull.

Network Flow + Mapping

Applications to Integer Programming

- 1. Reformulate (non-linear) components as decision diagram, and add the network flow model to the integer program
 - Quadratic objectives [BergmanCire18], quadratic constraints [BergmanLozano21]
- 2. Use (relaxed) decision diagrams to represent (part of) the model to generate cutting planes

 - Integer linear programs: [Behle+05] [Behle07] [TjandraatmadjaVH19] - Integer nonlinear programs: [DavarniaVH21] [Castro+22]
- 3. Use (relaxed) decision diagrams to compute dual bounds within the branch-and-bound search tree [TjandraatmadjaVH21]

Decision Diagram Bounds in Integer Programming

- Integration Design
 - Compile relaxed decision diagram for conflict graph in IP solver
 - Strengthen diagram by constraint propagation and Lagrangian bound
- Implemented in SCIP 5.0.1
 - Only IP model is given to solver ____
 - DD compiled automatically at each search node _____
- Experimental Setup
 - Independent set problem on random graphs ____
 - Add set of random knapsack constraints

[TjandraatmadjaVH21]

Decision Diagrams Can Speed Up IP Solvers

Instances: Watts-Strogatz random graphs n = 300, 350, 400, 450 vertices m = 0.1n knapsack constraints

On average: 65.5% node reduction 1.59x speedup

(DALL-E, 2024)

Branch-and-Bound Solver

(Escher, 1961)

Integer Programming

Constraint Programming

Column Elimination

(DALL-E, 2024)

From Column Generation to Column Elimination

Column Generation Model Min c^Tx s.t.

The pricing problem is often relaxed and solved with a smaller dynamic program.

From Column Generation to Column Elimination

Column Generation Model Min c^Tx s.t.

The pricing problem is often relaxed and solved with a smaller dynamic program.

Could we use the smaller dynamic program to directly model a relaxation of the IP?

Column Elimination Model Min c^Tx s.t.

Example: Graph Coloring

- Assign a color to each vertex such that adjacent vertices have a different color. Minimize the number of colors.
- MIP model: binary variable x_i for each independent set i
- Comparatively strong LP relaxation

$$\min \sum_{i \in I} x_i$$
s.t.
$$\sum_{i \in I} a_{ij} x_i = 1 \quad \forall j \in V$$

$$x_i \in \{0, 1\} \quad \forall i \in I$$

 $I = \{ \{1\}, \{2\}, \{3\}, \{4\}, \}$ $\{1,2\},\{1,4\},\{2,3\}\}$

Drawback: I has exponential size

Decision Diagram Represents All Independent Sets

- We know how to compile these!
- Each r-t path corresponds to an independent set
- Compact representation, but still exponential in general

Reformulating the MIP Model as Arc Flow Model

Column Elimination: Iterative Refinement

input graph

Optimal!

2 (1,1,0,0) (0,0,1,1) (3,4)

2 (1,0,0,1) (0,1,1,0)

Evaluation on DIMACS Benchmark Instances

(Each instance is solved to optimality by at least one of the two methods)

• Relaxed decision diagram from column elimination can be orders of magnitude smaller than exact decision diagram to prove optimality, but not always

→ DSJR500.1 (*n*=500, *m*=3,555)

- Exact DD: \geq 1M nodes
- Relaxed DD: 627 nodes

1000000

Column Elimination Algorithm

Figure 2 Column elimination for solving F.

Column Elimination Can Provide State-of-the-Art Results

- Vehicle Routing Problem with Time Windows

 - For some instances column elimination finds better bounds than VRPSolver [Pessoa+20] Column Elimination closes open instance C2_10_1 on 1,000 locations
- Graph Multi-Coloring Problem
 - Column Elimination closes five open benchmark instances
- Pickup-and-Delivery Problem with Time Windows
 - Column Elimination closes six open benchmark instances

[KarahaliosVH, under review]

Branch-and-Bound Solver

Integer Programming

Constraint Programming

Column Elimination

 x_3

0 \