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Decision Diagrams?
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Graphical representation of 
Boolean functions

f(x) = (x1 ⇔ x2) ∧ (x3 ⇔ x4)
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Boolean functions

f(x) = (x1 ⇔ x2) ∧ (x3 ⇔ x4)
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Decision Diagrams?
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- BDD: binary decision diagram 
- MDD: multi-valued decision diagram 

Applications: Formal verification, 
configuration problems, …

Graphical representation of 
Boolean functions

f(x) = (x1 ⇔ x2) ∧ (x3 ⇔ x4)



Decision Diagrams: Optimization View
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Optimization perspective: 
- literals → variables 
- arcs → assignments 
- paths → solutions

Graphical representation of 
Boolean functions

f(x) = (x1 ⇔ x2) ∧ (x3 ⇔ x4)
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Decision Diagrams: Optimization View

max  2x1 + x2 - 4x3 + x4 
subject to 
	 x1 – x2 = 0 
	 x3 – x4 = 0 

	 x1, x2, x3, x4   {0,1} ∈
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Decision Diagrams: Optimization View
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Decision Diagrams: Optimization View
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Maximizing a linear (or separable) function: 

- Arc lengths: contribution to the objective 
- Longest path: optimal solution 

(can also handle nonlinear functions)
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Decision Diagrams: Optimization View
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max  2x1 + x2 - 4x3 + x4 
subject to 
	 x1 – x2 = 0 
	 x3 – x4 = 0 

	 x1, x2, x3, x4   {0,1} ∈

Maximizing a linear (or separable) function: 

- Arc lengths: contribution to the objective 
- Longest path: optimal solution 
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Branch-and-Bound Solver

(DALL-E, 2024)

Column Elimination

(DALL-E, 2024)

Constraint Programming

(Durer, 1514)

Integer Programming

(Escher, 1961)
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Example Application: Independent Set Problem
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weight

Independent set in a graph: 
• Subset of non-adjacent vertices 
Maximum Independent Set Problem: 
• Find independent set with 

maximum weight

• Classical combinatorial optimization 
problem (equivalent to maximum clique in 
complement graph)


• Wide applications, ranging from scheduling 
to social network analysis

C

D

B

E

A
5

8 6

2

4



Integer Programming Formulation
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        max	 5xA + 4xB + 2xC + 6xD + 8xE 
subject to	 xA + xB  1 

	 	 	 xA + xE  1 
	 	 	 xB + xC  1 
	 	 	 xB + xD  1 
	 	 	 xC + xD  1 
	 	 	 xD + xE  1 
	 	 	 xA, xB, xC, xD, xE  {0,1}
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Independent set in a graph: 
• Subset of non-adjacent vertices 
Maximum Independent Set Problem: 
• Find independent set with 

maximum weight



BDD Compilation for Maximum Independent Set
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BDD Compilation for Maximum Independent Set

{C,D}
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{D,E}
{D}∅

{E}

∅ {E}

xE

∅

State: eligible vertices
: 0
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Theorem: This top-down compilation 
procedure generates a reduced exact BDD 

[Bergman, Cire, vH, Hooker, IJOC 2014]
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BDD Compilation for Maximum Independent Set
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Theorem: This top-down compilation 
procedure generates a reduced exact BDD 

[Bergman, Cire, vH, Hooker, IJOC 2014]

Optimal solution: Longest path
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Relaxed Decision Diagrams: Polynomial Size

• Limit the size of the diagram to a maximum width 

• Merge non-equivalent nodes 
− Define node merging rule to safely aggregate states  

• Requirements for relaxation 
1. Must represent a superset of exact solutions 

2. The path costs are valid (w.r.t. exact solutions)  

• Provides discrete relaxation 
− Strength is controlled by the maximum width

19

width

[Andersen, Hadzic, Hooker, Tiedemann, CP 2007]
[Bergman, Cire, vH, Hooker, CPAIOR 2011, IJOC 2016]



Independent Set Problem: Relaxed DD
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Independent Set Problem: Relaxed DD
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Independent Set Problem: Relaxed DD
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Exact vs. Relaxed Decision Diagrams
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Exact vs. Relaxed Decision Diagrams

(0,0,0,1,0)
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Exact vs. Relaxed Decision Diagrams
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Exact vs. Relaxed Decision Diagrams
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Exact vs. Relaxed Decision Diagrams
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Exact vs. Relaxed Decision Diagrams
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Restricted Decision Diagrams

• Under-approximation of the feasible set

[Bergman, Cire, vH, Yunes, J Heur. 2014]
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Restricted Decision Diagrams

• Under-approximation of the feasible set

[Bergman, Cire, vH, Yunes, J Heur. 2014]

C

D

B

E

A
5

8 6

2

4

: 0
: 1

5 0

0

00

0

22

4

000

00

6
6

8

xA

xB

xC

xD

xE

0

0

Maximum width = 3



Restricted Decision Diagrams
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x = (0, 1, 0, 0, 1) 
Lower bound = 12

Maximum width = 3

[Bergman, Cire, vH, Yunes, J Heur. 2014]

• Under-approximation of the feasible set

C

D

B

E

A
5

8 6

2

4

5 0

0

00

0

22

4

000

00

6
6

8

xA

xB

xC

xD

xE

: 0
: 1



Exact Search Method

• Branch-and-bound scheme based on decision diagrams 

− Dual bounds: Relaxed decision diagrams 

− Primal bounds: Restricted decision diagrams 

− Branching is done on the nodes of the diagram

32

[Bergman, Cire, vH, Hooker, IJOC 2016]



Branch and Bound
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Node Queue
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Node Queue
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Maximum Independent Set: 500 variables

36

Average percent optimality gap 
(random instances) with 1h time limit



Maximum Independent Set: 1500 variables
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Average percent optimality gap 
(random instances) with 1h time limit



Maximum Cut Problem: BiqMac vs BDD
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Branch-and-Bound Solver

(DALL-E, 2024)

Column Elimination

(DALL-E, 2024)

Constraint Programming

(Durer, 1514)

Integer Programming

(Escher, 1961)



Constraint Programming = Propagate (+ Search)

• Constraint propagation algorithm for individual constraints 

− remove inconsistent values from variable domains 

− propagate updated domains to other constraints

40

x1 > x2

x1 + x2 = x3

alldifferent (x1, x2, x3, x4)

x1 ∈ {1,2,3}, x2 ∈ {1,2,3,4}, x3 ∈ {2,3}, x4 ∈ {2,3,4}



Constraint Programming = Propagate (+ Search)

• Constraint propagation algorithm for individual constraints 

− remove inconsistent values from variable domains 

− propagate updated domains to other constraints

41

x1 > x2

x1 + x2 = x3

alldifferent (x1, x2, x3, x4)

x1 ∈ {2}, x2 ∈ {1}, x3 ∈ {3}, x4 ∈ {4}

Domain propagation has 
its limitations however



Propagate Decision Diagrams!

42

alldifferent (x1, x2, x3, x4)
x1 + x2 + x3 ≥ 9

xi ∈ {1,2,3,4} (i = 1,2,3,4)

256 solutions

domain 
relaxation

24 solutions

propagate 
alldifferent

6 solutions

propagate 
x1 + x2 + x3 ≥ 9

[Andersen, Hadzic, Hooker, Tiedemann, 2007]

Optimization 
- Evaluate objective to retrieve dual bound

Propagate decision diagrams 
- Remove inconsistent arcs from diagram 
- Use relaxed diagrams of polynomial size



Example Application: Disjunctive Scheduling

• Activities 
− Processing time: pi 

− Release time: ri 

− Deadline: di 

• Resource 
− Nonpreemptive 

− Process one activity at a time 
• Objective 

− Minimize makespan, sum of completion times, tardiness, … 

• Optional side constraints 
− Precedence constraints, sequence-dependent setup times, …

43

Activity 1

Activity 2

Activity 3

0 1 2 3 4



Decision Diagram: Solution = Permutation
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 2

1

1 2

Act ri pi di

1 3 4 12

2 0 3 11

3 1 2 10

Path  3 – 2 – 1 :  

6  ≤ start1  ≤ 8 

3  ≤ start2  ≤ 5 

1  ≤ start3  ≤ 3

 3

 2

precedence: 3  1≪

Solution: sequence of activities π1, π2, …, πn

π1

π2

π3



MDD-Based Propagation

Propagation: remove infeasible arcs from the MDD 

We can utilize several structures/constraints: 
• Alldifferent for the permutation structure 

• Earliest start time and latest end time 

• Precedence relations 

For each constraint type we maintain specific state information at each node 
in the MDD (both from top down and bottom up) 

Bounding: Evaluate the objective function (longest/shortest path)

45
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Top-down MDD compilation: Example
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Top-down MDD compilation: Example
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Top-down MDD compilation: Example
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π1

π2

π3

2 32 32

3 12

3

1 32

1 32

3 1
2

1 32 1
2

minimize makespan: lower bound = 7 lower bound = 7 optimum = 9

precedence: 
3  1≪

Act ri pi di

1 3 4 12

2 0 3 11

3 1 2 10



Sequencing and Scheduling Applications
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TSP with Time Windows  
- 20-60 cities (Dumas/Ascheuer instances) 
- max MDD width: 16 
Compare MDD with CP Optimizer

Sequential Ordering Problem (TSPLib) 
- TSP + precedence constraints 
- max MDD width: 2048 
Closed 3 instances for the first time [Cire&vH 2013] 
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Representing Integer Feasible Sets
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Integer Program 
Representation

Feasible Set as 
Decision Diagram

Network Flow + 
Mapping

Theorem [Behle07]: Projecting the decision diagram network flow 
reformulation back to the original space yields the convex hull.



Applications to Integer Programming

1. Reformulate (non-linear) components as decision diagram, and add the 
network flow model to the integer program 

- Quadratic objectives [BergmanCire18], quadratic constraints [BergmanLozano21] 

2. Use (relaxed) decision diagrams to represent (part of) the model to 
generate cutting planes 

- Integer linear programs: [Behle+05] [Behle07] [TjandraatmadjaVH19] 

- Integer nonlinear programs: [DavarniaVH21] [Castro+22] 

3. Use (relaxed) decision diagrams to compute dual bounds within the 
branch-and-bound search tree	 	 [TjandraatmadjaVH21]
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Decision Diagram Bounds in Integer Programming

• Integration Design 

− Compile relaxed decision diagram for conflict graph in IP solver 

− Strengthen diagram by constraint propagation and Lagrangian bound 

• Implemented in SCIP 5.0.1 

− Only IP model is given to solver 

− DD compiled automatically at each search node 

• Experimental Setup 

− Independent set problem on random graphs 

− Add set of random knapsack constraints

53

[TjandraatmadjaVH21]



Decision Diagrams Can Speed Up IP Solvers

On average:	 65.5% node reduction 
	 	 	 	 1.59x speedup

54

Instances: Watts-Strogatz random graphs 
n = 300, 350, 400, 450 vertices 
m = 0.1n knapsack constraints



Branch-and-Bound Solver
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Column Elimination
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(Escher, 1961)



From Column Generation to Column Elimination
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Min cTx s.t. 

… 

The pricing problem is often relaxed and solved with a smaller dynamic program.

x  ≥ b

x ∊ {0,1}n 

Column Generation Model



From Column Generation to Column Elimination
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Column Elimination ModelColumn Generation Model
Min cTx s.t. Min cTx s.t. 

The pricing problem is often relaxed and solved with a smaller dynamic program.

x  ≥ b

x  ≥ b

x ∊ {0,1}n 

Could we use the smaller dynamic program to directly model a relaxation of the IP?



Example: Graph Coloring

• Assign a color to each vertex such that adjacent vertices 
have a different color.  Minimize the number of colors. 

• MIP model: binary variable xi for each independent set i 

• Comparatively strong LP relaxation

58
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Drawback: I has exponential size

I = { {1},{2},{3},{4}, 
{1,2},{1,4},{2,3} }



Decision Diagram Represents All Independent Sets
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1 2

3 4

• We know how to compile these! 

• Each r-t path corresponds to an 
independent set 

• Compact representation, but 
still exponential in general



Reformulating the MIP Model as Arc Flow Model
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Integer variable ya : ‘flow’ through arc a

minimize number of paths (colors)

one 1-arc per vertex

‘flow conservation’

integrality



Column Elimination: Iterative Refinement
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Evaluation on DIMACS Benchmark Instances

Size of Exact DD
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• Relaxed decision diagram from 
column elimination can be orders 
of magnitude smaller than exact 
decision diagram to prove 
optimality, but not always 

• DSJR500.1 (n=500, m=3,555) 
− Exact DD: ≥1M nodes 
− Relaxed DD: 627 nodes
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(Each instance is solved to optimality by at least one of the two methods)



Column Elimination Algorithm
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LP

IP



Column Elimination Can Provide State-of-the-Art Results

• Vehicle Routing Problem with Time Windows 

− For some instances column elimination finds better bounds than VRPSolver [Pessoa+20] 

− Column Elimination closes open instance C2_10_1 on 1,000 locations 

• Graph Multi-Coloring Problem 

− Column Elimination closes five open benchmark instances  

• Pickup-and-Delivery Problem with Time Windows 

− Column Elimination closes six open benchmark instances 

64

[KarahaliosVH, under review]



Branch-and-Bound Solver

Column Elimination

Constraint Programming

Integer Programming


