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Abstract 
Software analysts use static analysis as a 

standard method to evaluate the source code for 
potential vulnerabilities, but the volume of findings is 
often too large to review in their entirety, causing the 
users to accept unknown risk. Large Language Models 
(LLMs) are a new technology with promising initial 
results for automation of alert adjudication and 
rationales. This has the potential to enable more 
secure code, support mission effectiveness, and reduce 
support costs. This paper discusses techniques for 
using LLMs to handle static analysis output, initial 
tooling we developed, and our experimental results 
from tests using GPT-4 and Llama 3.  
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1. Introduction 

1.1. Motivation for Improving Static Analysis 

In high-assurance areas (such as military systems, 
avionics, medical devices, etc.), software analysts 
evaluate source code for security weaknesses before 
deploying new software. Static analysis (SA) is widely 
used and is one of the best techniques available: it is 
much more practical than full formal verification, and 
it can catch vulnerabilities that can evade dynamic 
analysis. But static analysis still requires significant 
manual effort and is inherently difficult, time-
consuming, and expensive. Manual effort is required 
for each SA alert to adjudicate whether it is a true or 
false positive, since most general flaw-finding SA 
tools produce many false positives.  There are many 
types of code flaws identified in taxonomies such as 
the Common Weakness Enumeration (CWE), and SA 
tools produce alerts for many types. Human analysts 
must be able to analyze each kind to be able to 
adjudicate the alert, which requires great expertise. 

Software assurance teams typically prioritize 
potential vulnerabilities by a combination of 
likelihood and severity, and then they manually review 
only the top alerts. One might imagine that low-
severity categories could be ignored entirely, but 

sometimes even code weaknesses categorized as 
lower-severity can cause costly failures. Many types 
of code flaws (even those categorized as lower 
severity) can lead to vulnerabilities that common 
attack patterns use. For example, the Common Attack 
Pattern Enumeration and Classification (CAPEC) 
(MITRE, 2023) describes an attack pattern (MITRE, 
2020) that takes advantage of a lower-category 
weakness (MITRE, 2024). As another example, the 
Ariane flight V88 rocket explosion (which resulted in 
a loss calculated in 1997 as more than $370 million) 
was caused by code flaws that static analysis tools can 
detect (integer overflow and improper exception 
handling) (Lions, 1996) but are often not considered 
high priorities to identify and fix. In 2015, an integer 
overflow was discovered in the Boeing 787 
Dreamliner that would cause loss of electrical power 
after 248 days of continuous power (Cheng, 2016). 

1.2. Latest LLMs as Breakthroughs for 
Automating Static Analysis Alert 
Adjudication 

 Large Language Models, such as GPT-4 
(OpenAI’s latest Generative Pre-trained Transformer 
(GPT)) (OpenAI, 2023), present a significant 
breakthrough, for two major reasons: 

1. They produce a detailed explanation to 
support their final answer, in contrast to older 
machine learning (ML) techniques (Flynn, 
2018) which involve statistical algorithms 
that can learn from data and generalize to 
unseen data. These older ML techniques 
lacked interpretability and often pivoted on 
irrelevant details that merely correlated with 
vulnerabilities in their training data. The 
generated explanation can be double-checked 
by both humans and the LLM itself. 

2. They can generate and use function 
summaries, function preconditions, and 
other intermediate results to enable LLM-
based tools to adjudicate alerts whose 
adjudication requires analyzing multiple 
functions spread across the codebase. 
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Recent work shows that LLMs can perform well 
in detecting and localizing software defects. Chan et 
al. (2023) use LLMs to detect over 250 vulnerability 
types in code being edited. They deployed their model 
as a VSCode extension with ~100K daily users, with a 
90% reduction in the rate of vulnerabilities in 
developed code. Fan et al. (2023) developed an 
intelligent agent that responds to queries by processing 
code and interactions with LLMs, SA tools, code 
retrieval tools, and web search tools to check 
intentions of code segments and detect bugs. LLMAO 
(LLM fAult lOcalization) is an LLM-based approach 
for localizing program defects at line level, outputting 
bug probabilities for each line of code (Yang et al., 
2024). It localized more bugs in the same set of 
benchmark codebases than the previous best deep-
learning fault localizer, and it doesn't require any 
additional training or test cases to handle unseen 
projects. It uses a bidirectional language model, 
allowing it to consider both preceding and following 
lines.  

Two recent papers have attempted to quantify the 
benefits of applying LLMs to the problem of pruning 
false positives from static-analysis alerts (Li et al., 
2023a, 2023b). Both have explored the benefits of 
designing a prompting algorithm, highlighting the 
importance of chain-of-thought, task decomposition, 
and progressive prompting strategies. One found that 
an LLM-enabled system demonstrated high precision 
and recall in a real-world scenario and even identified 
13 previously unknown use-before-initialization 
(UBI) bugs in the Linux kernel (Li et al., 2023b). 
While these studies provide useful templates for 
system design, they do not fully address SA alert 
adjudication challenges because they both focused on 
the relatively narrow application of UBI bugs in the 
Linux kernel as a single case study. 

Sherman (2023) found that LLMs often perform 
poorly when asked to find all security issues in a 
snippet of code. We have found that LLMs do much 
better when asked to adjudicate a specific type of issue 
on a specific line. Li et al. (2023a) also found that 
GPT-4 works well for this task. 

2. Techniques for Using LLMs for Static-
Analysis Alert Adjudications and 
Evaluation of these Techniques 

We developed a model of how an LLM-based tool 
could be used for SA alert adjudications, shown in 
Figure 1. The LLM-based tool ingests source code and 
SA alerts, and it then creates a query (a “prompt”) to 
the LLM for each alert. The LLM ideally outputs 
adjudicated true positives along with a trace, 
adjudicated false positives with a proof sketch, or it 
adjudicates as “uncertain”. 

We developed partial automation to test this 
concept. A script inserts “// ALERT” to the code line 
that the SA alert identifies. The script creates an LLM 
prompt that includes the source code of the function 
that contains the alerted-about line, the type of code 
flaw to adjudicate (e.g., “integer overflow”), and 
additional data from the alert. In the experiments 
discussed in this paper, we used GPT-4 and Llama 3 
to test our queries. Although the web version of GPT-
4 enables optional web search and Python execution, 
none of our experiments used these capabilities. 

For the Llama experiments, we used the Llama 
3.1-70B model publicly web-accessible from Meta 
(2024), in this paper called simply “Llama 3”. This 
model has 70 billion parameters (“70B”). It should be 
noted that Llama 3.1-405B may perform better. We 
used the medium-size 70B model because it is the 
largest size that would run comfortably (with 1 byte 
per parameter) on hardware under $10k. (In contrast, 
the 405B model would require closer to $50k, again at 
1 byte per parameter.) Some potential users require an 
LLM that they can run locally on-premises; they are 
unable to use commercial cloud-based LLM services 
due to the sensitivity of their data.  

In this paper, the GPT-4 links (meaning all the 
links that start with “https://chatgpt.com”) go to 
webpages that show tests that we conducted. They 
show the exact input that we provided to GPT-4. Each 
page also shows the full text of the responses from 
GPT-4, which often includes extensive step-by-step 
analysis of the code and the possible code flaw. We 
provide summaries and encourage those interested in 

 
Figure 1. Using an LLM to adjudicate static-analysis alerts 

Existing
Static-Analysis 

Tool(s)Source Code
Alerts Adjudicated true positives, with trace

LLM-Based 
Tool

Adjudicated false positives, with proof sketch

Adjudicated uncertain
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additional detail to look at the full interactions shown 
at those links.  

We note that GPT-4 is reliable at correctly 
following instructions to produce JSON output in a 
specified schema, making it relatively easy to write a 
script to parse the output from a GPT-4 API call. In the 
rare case that it fails to produce output in the correct 
format, we simply try again until it produces output in 
the correct format. 

Tables 1-2 (at the end of this paper) summarize 
the experiments (labeled “Expt-N”) discussed below. 

2.1. Example: GPT-4 Adjudicating an Alert 
in the Linux Kernel 

In the simplest case, we can just provide the LLM 
with an alert and the function containing the flagged 
line of code.  

Expt-01: We give an example of this case, where 
GPT-4 successfully adjudicates an alert for the 
vulnerability CVE-2022-41674 (which is about an 
integer-overflow leading to a buffer overflow in the 
Linux kernel): <https://chatgpt.com/share/4ce0cdae-
47b7-4648-9462-9e0a381ccc37>.  

First, our script adds comments identifying two 
code locations that the alert specifies. Next, we submit 
a prompt to GPT, which has a few sections. The first 
part of the prompt is the following text: 

I want you to adjudicate whether a static-analysis 
alert is correct or a false alarm. The alert warns of a 
buffer overflow during `memcpy` on the line ending 
with "// ALERT-2" that happens if there is an integer 
overflow on the line ending with "// ALERT-1." 

The middle part of the prompt consists of the 
source code of the alerted-about function. The final 
part of the prompt is the following text: 

If you can determine whether the alert is correct 
or a false alarm, please indicate this determination and 
explain your reasoning, and at the end of your 
response, say either `{"answer": "true positive"}` or 
`{"answer": "false positive"}`. First identify whether 
integer overflow can happen. If it can't, then report the 
alert is a false positive. If it can happen, then examine 
whether it can lead to a buffer overflow. 

Step-by-step, GPT-4 determines the following, 
concluding that the alert is a true positive: 

1. An integer overflow can happen on the line  
`cpy_len = mbssid[1] + 2; // ALERT-1` if 
`mbssid[1]` is equal to 255, since cpy_len is 
an unsigned 8-bit integer. 

2. GPT-4 analyzes the relation between the 
allocated size of the `new_ie` buffer (into 
which `pos` points) and the amount being 
copied into it. It determines that a large value 
of `mbssid[1]` should (and does) result in a 

small allocated buffer and should (but does 
not) result in a small amount copied into the 
buffer. Due to the integer overflow, a large 
amount is actually copied into the small 
buffer, overflowing the buffer. 

3. It then provides its final answer at the end of 
its response, in the format requested by the 
prompt: `{"answer": "true positive"}` 

We’ve summarized GPT’s determinations above 
but it is important to note that GPT-4 more fully states 
the basis for its reasoning prior to the determination 
and that a human analyst can verify its reasoning. 

Expt-02: If asked about the patched version, 
GPT-4 correctly identifies that the vulnerability is no 
longer present: <https://chatgpt.com/share/7ee8e60b-
1fed-4b67-b77b-7edd289fee90>. 

2.2. Mitigating Context-Window Limits 

LLMs have a limited context window, which 
means that an LLM can usually ingest a single 
function but not an entire codebase. Sometimes, the 
LLM can make an adjudication based only on the 
function containing the flagged line of code. In other 
cases, it needs more context. To overcome the context-
window limit, we must summarize the relevant parts 
of the codebase enough so that the LLM can digest it.  

Some strategies for this have been documented in 
the literature:  

• Use traditional static analysis to produce 
required information, as in Ahmed et al. 
(2023). 

• Use the LLM itself to generate the function 
summaries, as in Li et al. (2023b).  

We have also tested two other strategies. One 
strategy is: As part of the prompt, direct the LLM to 
ask for needed information. In particular, we prompted 
the LLM to ask for the definition of a called function 
when it needs to know how the called function 
behaves. Our tool will then supply it to the LLM.  

Figure 2 shows the start of the prompt.  
  

I want you to adjudicate whether a static-analysis 
alert is correct or a false alarm.  The alert 
message is "Null pointer passed to 1st parameter 
expecting 'nonnull'".  If you need to know the 
behavior of other functions (e.g., whether the 
function aborts execution), please ask and I will 
provide their source code.  The alerted line-of-
code is marked in the below snippet with 
"/* ALERT */". 

Figure 2. Start of prompt for asking for missing 
functions 
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Figure 3 shows the end of the prompt.  

Expt-03: An example of this strategy is here: 
<https://chatgpt.com/share/b01b0394-55f2-49f7-
8a11-bfda15362297>. In this example, to determine 
that a null-pointer alert is a false positive, the LLM 
needs the body of the user-defined function 
“out_of_memory” to determine that the function never 
returns. 

A second strategy is to use the LLM to generate 
preconditions for avoiding a bad state in a function 
with an alert, and then use the LLM to check whether 
the callers of the function satisfy the preconditions.  

Expt-04: An example of creating a precondition 
is provided here: <https://chatgpt.com/share/cfeabe6f-
5757-4c25-be82-f9569f8c9df2>. In this example, 
GPT-4 analyzes a function named “greet_user” that 
takes a string as an argument. GPT-4 is asked to 
adjudicate an alert about a buffer overflow. In its 

response, GPT-4 correctly determines that the buffer 
overflow can happen only if the length of the input 
string is too long. It returns a precondition for avoiding 
the buffer overflow:  

[{"precond": "strlen(username) <= 52", …}] 
Expt-05: Now we ask GPT-4 to use this 

precondition: <https://chatgpt.com/share/bbbf7df7-
4fba-43b1-8f46-f09c4bd290cb>. In this example, 
GPT-4 analyzes a function that calls the “greet_user” 
function mentioned above. GPT-4 is given the 
precondition that it previously computed (in a separate 
conversation), and it is asked whether this 
precondition is satisfied. It correctly determines that 
the precondition can be violated.  Figure 4 shows an 
example of the strategy of creating and using 
preconditions. 

2.3. GPT-4 Double-Checking its Work 

LLMs sometimes make mistakes. One way to 
mitigate this is to run the LLM multiple times and 
check that the answers aren’t inconsistent except on a 
small percentage of runs. Another mitigation is to ask 
the LLM to double-check its own work.  

Expt-06: Example of GPT-4 double-checking its 
work: <https://chatgpt.com/share/78200ee7-37e7-
413d-8b2d-fd9051c28106>. In this example, GPT-4 
mistakenly claims that a program has a use-after-free 
bug, but it corrects itself when asked to double-check 
the reported trace. The first prompt provides the source 
code for the function and instructs GPT-4 as follows: 

If you can determine whether the alert is correct 
or a false alarm, please indicate this 
determination and explain your reasoning, and at 
the end of your response, say either `{"answer": 
"true positive"}` or `{"answer": "false 
positive"}`. If you need the source code of other 
functions, please indicate which functions you 
need, using the format `{"needed_functions": 
["func1", "func2", ...]}`, and I will provide their 
source code. 

Figure 3. End of prompt for asking for missing 
functions 

 
Figure 4. Creating and using preconditions. 

LLM LLM

Top-level of tool

Prompt: Write a precondition for 
the below function to avoid buffer 
overflow.

void foo(char* s) {
…

}

{"Justification": "…",  "Precond": 
"assert(strlen(username) <= 52);"}

Prompt: The function `foo` has this 
precondition:
`assert(strlen(username) <= 52);`.
Does the below function always satisfy 
this precondition when it calls `foo`?

void bar(…) {
…
foo(s);
…

}

(trace goes here)
{"precond_satisfied": "false"}

{“adjudication": “true positive"}
(justification goes here)

Human 
analyst 

(optional)
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Investigate whether there are any use-after-free 
vulnerabilities in this C++ code, thinking step-by-
step. Don't worry about any other problems with 
code; focus exclusively on use-after-free bugs.  If 
you find a use-after-free bug, provide a trace that 
demonstrates memory being used after being freed. 

GPT-4 responds by defining use-after-free 
vulnerabilities: “A use-after-free vulnerability occurs 
when a program continues to use a pointer after it has 
been freed.” Then, it inspects code for pointers and 
allocation and freeing of memory for the pointers it 
finds. Next, it provides an analysis, then lists steps of 
a trace it mistakenly thinks ends with a use-after-free, 
ending with this summary: 
The vulnerability arises due to the fact that the `R` 
command can potentially free memory that's still 
being pointed to by entries in `sub_list`. To fix this, 
we should avoid using the reallocated memory from 
`getline()` for items that have been copied to the 
`sub_list` or ensure we update any relevant pointers 
in `sub_list` when renaming in `full_list`. 

The next prompt is: “OK, now please double-
check that the trace is correct, stepping thru the code 
in detail.” GPT-4 responds with a detailed step-by-step 
walkthrough, then ends with:  
Upon a detailed step-by-step walkthrough, the trace 
provided previously appears to be incorrect. The 
use-after-free scenario doesn't occur because when 
an item from full_list is copied to sub_list using the 
'C' command, a duplicate of the string is created with 
strdup(), ensuring that sub_list entries are 
independent of any reallocations or frees that might 
occur with full_list entries. 
Therefore, there is no use-after-free vulnerability 
with the described trace in the provided code. 

Expt-07: Deleting the strdup call in the above 
example introduces a real use-after-free bug. We 
removed this call to strdup and separately (i.e., in a 
new conversation) asked GPT-4 to analyze this 
version of the code. GPT-4 correctly identifies the use-
after-free bug and correctly reports that it is a real bug 
when asked to double-check the reported trace in 
detail: <https://chatgpt.com/share/36b75aaa-d52a-
480c-8694-f8f62e64fdcc>. GPT-4’s detailed double-
check ends with: “After a detailed step-through, the 
trace does hold. The use-after-free vulnerability 
indeed exists, and the trace correctly demonstrates it.” 

2.4. GPT-4 Finding and Proving Loop 
Invariants 

GPT-4 has some ability to find and prove loop 
invariants.  

Expt-08: We tested it on a simple example of 
binary search: <https://chatgpt.com/share/88c782ff-
c7b7-4d4c-8cb1-988df4a3f1a8>. The full initial 
prompt is shown in Figure 5, including source code for 
the function. GPT-4 steps through the code, specifying 
a “Maintenance step”, finds the loop invariant (“0 <= 
low <= high < n”), and then sketches a proof of the 
loop invariant. A second prompt, “Please analyze the 
Maintenance step in more detail”, elicits additional 
detail from GPT-4 which supports its previous 
adjudication. This GPT-4 response ends with: “In both 
scenarios, whether we're updating `low` or `high`, we 
can see that our loop invariant `0 <= low <= high < n` 
is maintained. Thus, during any given iteration of the 
loop, the index ̀ mid` always falls within the safe range 
`[0, n-1]`, ensuring there is no buffer overflow.” 

2.5. Writing proof annotations in Frama-C 

There are existing proof verification tools, such as 
Frama-C, that can check hand-written proofs of certain 

Investigate whether there is a buffer overflow in 
the below code, thinking step-by-step. If 
possible, generate a precondition that guarantees 
absence of a buffer overflow, and give a proof 
sketch demonstrating that the precondition 
guarantees absence of buffer overflow. If helpful, 
find and prove a loop invariant. 
``` 
bool binary_search(int arr[], int n, int x) { 
    int low = 0; 
    int high = n - 1; 
 
    while (low <= high) { 
        int mid = low + (high - low) / 2; 
        if (arr[mid] == x) { 
            return true; 
        } 
        if (arr[mid] < x) { 
            low = mid + 1; 
        } else { 
            high = mid - 1; 
        } 
    } 
    return false; 
} 
``` 

Figure 5. Prompt for no-buffer-overflow proof. 
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program properties. Writing such proofs is often 
laborious and requires significant expertise. Using an 
LLM to write such proofs would be a big win, 
especially since the LLM’s output doesn’t need to be 
trusted because it can be externally verified.  

Expt-09: We asked GPT-4 to write a precondition 
for the following function sufficient to ensure absence 
of buffer overflow: 
int rand_val_of_array(int* arr, int n) { 
  int i = random() % n; 
  return arr[i]; 
} 

The conversation with GPT-4 is provided here: 
<https://chatgpt.com/share/56894914-aba0-4d5a-
9f67-7ad3071314ad>. At first, GPT-4 produced an 
invalid precondition: 
/*@ requires \valid(arr + (0..n-1)); 
    requires n > 0; 
    ensures \result == arr[\old(i)]; 
 */ 

We then provided GPT-4 with the error message 
generated by Frama-C: 
$ frama-c -wp temp25.c  
[kernel] Parsing temp25.c (with preprocessing) 
[kernel:annot-error] temp25.c:3: Warning:  
  unbound logic variable i. Ignoring logic 
specification of function rand_val_of_array 
[kernel] User Error: warning annot-error treated as 
fatal error. 
[kernel] User Error: stopping on file "temp25.c" that 
has errors. Add '-kernel-msg-key pp' 
  for preprocessing command. 
[kernel] Frama-C aborted: invalid user input. 

In response, GPT-4 generated a correct function 
precondition: 
/*@ requires \valid(arr + (0 .. n - 1)); 
    requires n > 0; 
    ensures \exists integer k; 0 <= k < n && \result 
== arr[k]; 
 */ 

This example suggests that LLMs have potential for 
writing program annotations in languages such as 
Frama-C, but the existing state-of-the-art (GPT-4) 
doesn’t work very well for this task. Fine-tuning, with 
a mix of real-world data and synthetic data, might 
enable significantly better performance. 

2.6. Detecting multiple bugs in 
FormAI_101087.c 

Expt-10: Here, we ask GPT-4 to adjudicate an 
alert about an invalid pointer dereference in the file 
FormAI_101087.c from (Tihanyi, 2023). The 
dereference in question is “sock_addr->sin_addr”. 

GPT-4 correctly identifies that sock_addr might be 
uninitialized at that point of the program. However, it 
provides an incomplete explanation and an incomplete 
repair, consisting of inserting the following check 
before the dereference: 
if (!sock_addr) { 
    fprintf(stderr, …); 
    exit(EXIT_FAILURE); 
} 

The conversation with GPT-4 is provided here: 
<https://chatgpt.com/share/5f9fc88a-6fd1-4664-8e80-
453955e8b8df>.  

Expt-11: After applying GPT-4’s suggested 
repair, we again asked it whether the expression 
“sock_addr->sin_addr” might have an invalid pointer 
dereference. This time, it finds the second flaw: The 
earlier call to freeifaddrs can free the memory that 
sock_addr points to. (In the likely lucky case, this 
memory hasn’t been reused and the program works as 
expected, which is how the bug escaped testing.) 
<https://chatgpt.com/share/6a2a18bc-1f62-4714-
a6d6-b716e131ab48>. Looking at the code at this link, 
one might notice that there is another problem with 
GPT-4’s initial repair: sock_addr might be 
uninitialized at that point in the program.  

Expt-12: We asked GPT-4 to identify any use-
before-initialization errors in the function, and it 
correctly identified an instance of such an error: 
<https://chatgpt.com/share/30c52cf0-d64f-4e2a-
8a00-e7d681c1e710>.  

2.7. Llama 3  

We ran Llama 3 on the examples in Table 1, using 
the same prompts as we used for GPT-4. The saved 
Meta AI links show the full responses. 

 Expt-01: Llama 3 incorrectly adjudicated the 
alerts. It identified that mbssid[1] is an unsigned 8-bit 
integer, and the maximum value it can hold is 255. 
However, then it incorrectly stated that no integer 
overflow happens after adding 2 to that value since 
that result “is within the range of size_t (which is 
typically an unsigned 32-bit or 64-bit integer type)”. 
In fact, the relevant variable is an 8-bit integer (not a 
size_t), so integer overflow occurs. Based on that 
initial incorrect analysis, Llama 3 then incorrectly 
adjudicates the buffer-overflow alert as false. 

Expt-02: Llama 3 correctly adjudicates the alert. 
However, its reasoning is faulty since it incorrectly 
states an unsigned 8-bit integer could not overflow 
from trying to hold the result of 255 + 2. In fact, it can. 
However, in the line identified in the prompt, that 
result instead is assigned to a variable cpy_len of the 
larger type (size_t) on the line identified as having a 
possible integer overflow. The cpy_len would not 
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overflow, which results in the alerted-about buffer 
overflow adjudication being false. Again, the Llama 3 
reasoning is incorrect however, as it extraneously 
states that it comes to its conclusion because: “The 
value of cpy_len does not directly affect the buffer 
size, and any potential overflow would only change 
the offset within the buffer, not the buffer size itself.” 
Though true, that should not lead to any conclusion 
about buffer overflow being possible. 

Expt-03: Llama 3 makes the correct final 
adjudication “false positive”, just like GPT-4. 
Differently than GPT-4, Llama 3 does not ask for 
information about the behavior of the out_of_memory 
function, which GPT-4 specified was necessary to 
adjudicate the alert. Without information that that 
function calls abort(), Llama 3 does not have 
justification for its stated rationale “the 
out_of_memory function is called if the memory 
allocation fails, which would prevent the null pointer 
from being passed to memcpy”, which it uses for 
reasoning towards its adjudication. 

Expt-04: Llama 3 identifies that a buffer 
overflow could happen, just like GPT-4. Llama 3’s 
function precondition specifies that strlen(username) 
should be less than 13, which is incorrect. (In contrast, 
GPT-4 correctly identifies that strlen(username) 
should be less than 52.) 

Expt-05: Llama 3 incorrectly determines that the 
precondition was satisfied, based on an incorrect 
determination that greet_user will always receive a 
string of length 53 or less (actually it could receive a 
string of length 54 when the input doesn’t include a 
newline, as GPT-4 determines). Note that we used the 
correct precondition for greet_user in this prompt 
rather than the incorrect precondition that Llama 
generated in Expt-04. 

Expt-06: Initially, Llama 3 comes to the same 
incorrect true-positive conclusion as GPT-4, and 
offers one similar recommendation for a fix and an 
alternative fix by using a different data structure to 
manage memory (GPT-4 didn’t suggest the latter 
option). After being prompted to double-check its 
trace, both LLMs correct their adjudication to 
determine there is no use-after-free vulnerability.  

Expt-07: Llama 3 initially comes to the correct 
initial conclusion that there is a use-after-free 
vulnerability. After being prompted to double-check 
its work, only Llama 3 incorrectly concludes there is 
not a use-after-free vulnerability. 

Expt-08: Llama 3 generates only one function 
precondition (n >= 0), which is the same as one of the 
two function preconditions that GPT-4 generates, but 
it misses the other precondition (that the input array 
should have at least size n). Both LLMs find the same 
loop invariant. 

Expt-09: Llama 3 chooses to use ACSL 
(ANSI/ISO C Specification Language) to specify 
function preconditions, same as GPT-4. GPT-4 (but 
not Llama 3) provides detail on how to run Frama-C 
to verify the proof annotations. Llama 3’s initial 
attempt contains the “requires \valid(arr + (0 .. n-1))” 
annotation (like GPT-4) but lacks the “requires n > 0” 
annotation. (Note that modulo-by-zero, like division-
by-zero, is undefined behavior in C.)  Frama-C reports 
timeouts on verifying the division_by_zero and 
mem_access properties; when provided with this 
information, Llama fails to realize that it needs a 
“requires n > 0” annotation. 

Expt-10: Llama 3 correctly identifies a potential 
invalid pointer dereference, same as GPT-4. Both 
LLMs provide code to fix it by checking if sock_addr 
is NULL, with slightly different error-handling: GPT-
4 prints a descriptive error message to stderr then exits, 
while Llama 3 has a comment for the developer to add 
code to handle that or exit. 

Expt-11: Llama 3 correctly identifies the 
potential invalid pointer dereference, same as GPT-4. 
They both recommend fixes that use inetop() instead 
of the inettoa() function. Only Llama 3 specifies that 
inettoa() is deprecated, but only the provided fix code 
from GPT-4 actually uses inetop(). 

Expt-12: Llama 3 correctly identifies the 
potential use-before-initialization error, same as GPT-
4. Both LLMs provide the same code fix. Llama 3 
provides a bit of additional unprompted-for secure 
coding advice and review related to mutex checking.    

3. Related Work with AI/ML for Static 
Analysis 

To date, there has been a significant amount of 
research on using machine learning to aid in efficiently 
identifying source code flaws (Flynn et al., 2020; 
Kremenek et al., 2004; Ruthruff et al., 2008; Flynn, 
2016). Researchers trained the ML using manually-
adjudicated alerts ("labeled data") and features such as 
code cohesiveness metrics, lines of code per function 
and file, developer ID, and recency-of-code edits 
around that code location. Some work found that 
aggregating alerts from multiple SA tools for the same 
code location improved classifier precision (Flynn, 
2016), and other work developed a lexicon and 
adjudication rules to enable consistent adjudications to 
improve classifier training data (Svoboda et al., 2016). 
Classifiers trained on labeled data from the same 
codebase generally perform better than those trained 
on data from different codebases (latter is called 
"cross-project prediction"), but techniques have been 
developed that improve cross-project prediction 
(Wang et al., 2016). The high cost and time required 
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for experts to manually adjudicate and create enough 
labeled data can be a barrier to creation of accurate 
static analysis classifiers. Flynn et al. made novel use 
of test suites (IARPA, 2018; Black, 2018) to create 
large datasets of labeled (true/false) SA alerts 
(augmenting ~7500 manually-adjudicated alerts on 
natural code). This resulted in high-precision ML 
classifiers for a larger set of CWE types than the 
natural dataset alone (Flynn et al., 2018; Flynn et al., 
2021) and created a framework for use with multiple 
SA tools, ML classification, adaptive heuristics, 
labeled datasets, and test suites (Flynn et al., 2021; 
Flynn et al., 2024). Gallagher et al. also used ML for 
finding code flaws but used LLVM intermediate 
representation instead of source (Gallagher et al., 
2022). Flynn and Gallagher both found that artificial 
code and flaw injection can cause classifiers to use 
features not helpful with natural code. 

4. Limitations and Future Directions 

There are several notable limitations of our work. 
We have tested only two LLMs: GPT-4 and Llama 3. 
Furthermore, the version of Llama 3 that we tested was 
the medium size (70B) version rather than the large 
size (405B). We also investigated only a small number 
of different alert types (CWEs). We explored a few 
different types of prompts, but there are many possible 
variations that may give noticeably better or worse 
performance. Even for exactly the same prompt, 
different runs of the LLM can give different results 
(except when the LLM’s temperature parameter is set 
to zero) due to different random seeds. Further work is 
needed to validate and quantitatively measure the 
techniques discussed in this paper. For example, we 
would want to methodically test the performance of 
the LLM on a large random sample of static-analysis 
results. This would ideally include running the LLM 
multiple times on each alert and conducting a 
statistical analysis to quantify the confidence in the 
results. To demonstrate greater applicability, we could 
apply the methods to a wide range of codebases and 
code flaws from multiple static analysis tools. If such 
experiments demonstrate that certain LLMs reliably 
adjudicate certain types of alerts, then the LLMs could 
be employed in practice to reduce the burden on 
analysts.  

Looking to the future, LLMs may greatly help to 
enable formal verification of software, an area that has 
long been impractical for large codebases due to the 
amount of manual effort involved. Wu et al. (2023) 
report success in using LLMs for generating formal 
proofs on a benchmark of formal-verification 
problems (SoSy Lab, 2023), beating state-of-the-art 
formal-verification tools on a number of hard cases. 

Generating and proving loop invariants and function 
pre-/post-conditions is often a crucial and challenging 
part of formal verification, and as evidenced by our 
initial experimental results, LLMs show promise for 
helping with this task. 
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Table 1: URLs for GPT-4 and Llama 3 conversations 

Expt # Full URLs for GPT-4 conversations Full URLs for Llama 3 conversations 
Expt-01 https://chatgpt.com/share/4ce0cdae-47b7-4648-9462-9e0a381ccc37 https://meta.ai/s/nVjyNWofwQMedi1Q/ 
Expt-02 https://chatgpt.com/share/7ee8e60b-1fed-4b67-b77b-7edd289fee90 https://meta.ai/s/Dbyg7keJJu94ao3f/  
Expt-03 https://chatgpt.com/share/b01b0394-55f2-49f7-8a11-bfda15362297 https://meta.ai/s/Ki1S1eCY657GceMF/ 
Expt-04 https://chatgpt.com/share/cfeabe6f-5757-4c25-be82-f9569f8c9df2 https://meta.ai/s/tMmxyRYA2N5bTV7X/ 
Expt-05 https://chatgpt.com/share/bbbf7df7-4fba-43b1-8f46-f09c4bd290cb https://meta.ai/s/Zk1qGbKjz8GrRXBW/ 
Expt-06 https://chatgpt.com/share/78200ee7-37e7-413d-8b2d-fd9051c28106 https://meta.ai/s/5Ccw75y4pRyhzYHy/ 

https://meta.ai/s/L6bt2UYMWCUaYfRC/ 
Expt-07 https://chatgpt.com/share/36b75aaa-d52a-480c-8694-f8f62e64fdcc https://meta.ai/s/jfsByVvTDekXMNTx/ 

https://meta.ai/s/qu11EiJ9trmfsQCR/ 
Expt-08 https://chatgpt.com/share/88c782ff-c7b7-4d4c-8cb1-988df4a3f1a8 https://meta.ai/s/ii8x7pTwjQWvJ2aj/ 
Expt-09 https://chatgpt.com/share/56894914-aba0-4d5a-9f67-7ad3071314ad https://meta.ai/s/bisCooGPtkp1mFJD/ 

https://meta.ai/s/gPgp8pZwp9Fp1n65/ 
Expt-10 https://chatgpt.com/share/5f9fc88a-6fd1-4664-8e80-453955e8b8df https://meta.ai/s/NFTpk2xdSJjr6ZNs/ 
Expt-11 https://chatgpt.com/share/6a2a18bc-1f62-4714-a6d6-b716e131ab48 https://meta.ai/s/VD1szypGbLKQF6ok/ 
Expt-12 https://chatgpt.com/share/30c52cf0-d64f-4e2a-8a00-e7d681c1e710 https://meta.ai/s/UZk23q1ywYQKNZCJ/ 

 
Table 2. Experiments with GPT-4 and Llama 3 

Expt 
# 

Paper 
section 

Codebase Lang Correct 
adjud- 
ication 

Code flaw type GPT4: 
Initial 
result 
correct 

GPT4: 
Second 
result 
correct 

Llama: 
Initial 
result 
correct 

Llama: 
Second 
result 
correct 

Prompt type 

Expt-
01 

2.1 Linux 
kernel 

C true 
positive 

Integer Overflow, 
Buffer Overflow 

yes N/A no N/A Step-by-step 
reasoning 

Expt-
02 

2.1 Linux 
kernel 

C false 
positive 

Integer Overflow, 
Buffer Overflow 

yes N/A yes N/A Step-by-step 
reasoning 

Expt-
03 

2.2 Zeek C false 
positive 

Null Pointer yes N/A yes N/A Ask for needed info 

Expt-
04 

2.2 Toy 
example 

C  N/A Buffer Overflow yes N/A no N/A Generate 
preconditions 

Expt-
05 

2.2 Toy 
example 

C  true 
positive 

Buffer Overflow yes N/A no N/A Check 
preconditions 

Expt-
06 

2.3 Toy 
example 

C++ false 
positive 

Use-After-Free no yes no yes Double-checking 
answer 

Expt-
07 

2.3 Toy 
example 

C++ true 
positive 

Use-After-Free yes yes yes no Double-checking 
answer 

Expt-
08 

2.4 Toy 
example 

C++ false 
positive 

Buffer Overflow yes N/A no N/A Find func precond 
and loop invariant 

Expt-
09 

2.5 Toy 
example 

C  N/A Buffer Overflow no yes no no Proof annotations in 
Frama-C 

Expt-
10 

2.6 FormAI 
101087 

C  true 
positive 

Invalid Pointer 
Dereference 

yes N/A yes N/A Find and fix invalid 
pointer dereference 

Expt-
11 

2.6 FormAI 
101087 

C  true 
positive 

Invalid Pointer 
Dereference 

yes N/A yes N/A Find and fix invalid 
pointer dereference 

Expt-
12 

2.6 FormAI 
101087 

C  true 
positive 

Use-Before-
Initialization 

yes N/A yes N/A Find and fix use-
before-initialization 

The column “Paper section” identifies the section of this paper that describes the experiment for GPT-4; the Llama version 
is described in Section 2.7. The column “Correct adjudication” indicates whether the static-analysis alert is actually a true 
positive or a false positive, as determined by manual inspection. The columns “Initial result correct” and “Second result 
correct” indicate whether the LLM produced a correct result in response to the first and second prompt in the conversation, 
respectively. Zeek is from https://github.com/zeek/zeek 
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