
Using LLMs to Adjudicate Static-Analysis Alerts

Will Klieber
Software Engineering Institute, Carnegie Mellon Univ.

weklieber@sei.cmu.edu

Lori Flynn
Software Engineering Institute, Carnegie Mellon Univ.

lflynn@sei.cmu.edu

Abstract
Software analysts use static analysis as a

standard method to evaluate the source code for
potential vulnerabilities, but the volume of findings is
often too large to review in their entirety, causing the
users to accept unknown risk. Large Language Models
(LLMs) are a new technology with promising initial
results for automation of alert adjudication and
rationales. This has the potential to enable more
secure code, support mission effectiveness, and reduce
support costs. This paper discusses techniques for
using LLMs to handle static analysis output, initial
tooling we developed, and our experimental results
from tests using GPT-4 and Llama 3.

Keywords: LLM, Software, Cybersecurity.

1. Introduction

1.1. Motivation for Improving Static Analysis

In high-assurance areas (such as military systems,
avionics, medical devices, etc.), software analysts
evaluate source code for security weaknesses before
deploying new software. Static analysis (SA) is widely
used and is one of the best techniques available: it is
much more practical than full formal verification, and
it can catch vulnerabilities that can evade dynamic
analysis. But static analysis still requires significant
manual effort and is inherently difficult, time-
consuming, and expensive. Manual effort is required
for each SA alert to adjudicate whether it is a true or
false positive, since most general flaw-finding SA
tools produce many false positives. There are many
types of code flaws identified in taxonomies such as
the Common Weakness Enumeration (CWE), and SA
tools produce alerts for many types. Human analysts
must be able to analyze each kind to be able to
adjudicate the alert, which requires great expertise.

Software assurance teams typically prioritize
potential vulnerabilities by a combination of
likelihood and severity, and then they manually review
only the top alerts. One might imagine that low-
severity categories could be ignored entirely, but

sometimes even code weaknesses categorized as
lower-severity can cause costly failures. Many types
of code flaws (even those categorized as lower
severity) can lead to vulnerabilities that common
attack patterns use. For example, the Common Attack
Pattern Enumeration and Classification (CAPEC)
(MITRE, 2023) describes an attack pattern (MITRE,
2020) that takes advantage of a lower-category
weakness (MITRE, 2024). As another example, the
Ariane flight V88 rocket explosion (which resulted in
a loss calculated in 1997 as more than $370 million)
was caused by code flaws that static analysis tools can
detect (integer overflow and improper exception
handling) (Lions, 1996) but are often not considered
high priorities to identify and fix. In 2015, an integer
overflow was discovered in the Boeing 787
Dreamliner that would cause loss of electrical power
after 248 days of continuous power (Cheng, 2016).

1.2. Latest LLMs as Breakthroughs for
Automating Static Analysis Alert
Adjudication

 Large Language Models, such as GPT-4
(OpenAI’s latest Generative Pre-trained Transformer
(GPT)) (OpenAI, 2023), present a significant
breakthrough, for two major reasons:

1. They produce a detailed explanation to
support their final answer, in contrast to older
machine learning (ML) techniques (Flynn,
2018) which involve statistical algorithms
that can learn from data and generalize to
unseen data. These older ML techniques
lacked interpretability and often pivoted on
irrelevant details that merely correlated with
vulnerabilities in their training data. The
generated explanation can be double-checked
by both humans and the LLM itself.

2. They can generate and use function
summaries, function preconditions, and
other intermediate results to enable LLM-
based tools to adjudicate alerts whose
adjudication requires analyzing multiple
functions spread across the codebase.

Proceedings of the 58th Hawaii International Conference on System Sciences | 2025

Page 7556
URI: https://hdl.handle.net/10125/109755
978-0-9981331-8-8
(CC BY-NC-ND 4.0)

Recent work shows that LLMs can perform well
in detecting and localizing software defects. Chan et
al. (2023) use LLMs to detect over 250 vulnerability
types in code being edited. They deployed their model
as a VSCode extension with ~100K daily users, with a
90% reduction in the rate of vulnerabilities in
developed code. Fan et al. (2023) developed an
intelligent agent that responds to queries by processing
code and interactions with LLMs, SA tools, code
retrieval tools, and web search tools to check
intentions of code segments and detect bugs. LLMAO
(LLM fAult lOcalization) is an LLM-based approach
for localizing program defects at line level, outputting
bug probabilities for each line of code (Yang et al.,
2024). It localized more bugs in the same set of
benchmark codebases than the previous best deep-
learning fault localizer, and it doesn't require any
additional training or test cases to handle unseen
projects. It uses a bidirectional language model,
allowing it to consider both preceding and following
lines.

Two recent papers have attempted to quantify the
benefits of applying LLMs to the problem of pruning
false positives from static-analysis alerts (Li et al.,
2023a, 2023b). Both have explored the benefits of
designing a prompting algorithm, highlighting the
importance of chain-of-thought, task decomposition,
and progressive prompting strategies. One found that
an LLM-enabled system demonstrated high precision
and recall in a real-world scenario and even identified
13 previously unknown use-before-initialization
(UBI) bugs in the Linux kernel (Li et al., 2023b).
While these studies provide useful templates for
system design, they do not fully address SA alert
adjudication challenges because they both focused on
the relatively narrow application of UBI bugs in the
Linux kernel as a single case study.

Sherman (2023) found that LLMs often perform
poorly when asked to find all security issues in a
snippet of code. We have found that LLMs do much
better when asked to adjudicate a specific type of issue
on a specific line. Li et al. (2023a) also found that
GPT-4 works well for this task.

2. Techniques for Using LLMs for Static-
Analysis Alert Adjudications and
Evaluation of these Techniques

We developed a model of how an LLM-based tool
could be used for SA alert adjudications, shown in
Figure 1. The LLM-based tool ingests source code and
SA alerts, and it then creates a query (a “prompt”) to
the LLM for each alert. The LLM ideally outputs
adjudicated true positives along with a trace,
adjudicated false positives with a proof sketch, or it
adjudicates as “uncertain”.

We developed partial automation to test this
concept. A script inserts “// ALERT” to the code line
that the SA alert identifies. The script creates an LLM
prompt that includes the source code of the function
that contains the alerted-about line, the type of code
flaw to adjudicate (e.g., “integer overflow”), and
additional data from the alert. In the experiments
discussed in this paper, we used GPT-4 and Llama 3
to test our queries. Although the web version of GPT-
4 enables optional web search and Python execution,
none of our experiments used these capabilities.

For the Llama experiments, we used the Llama
3.1-70B model publicly web-accessible from Meta
(2024), in this paper called simply “Llama 3”. This
model has 70 billion parameters (“70B”). It should be
noted that Llama 3.1-405B may perform better. We
used the medium-size 70B model because it is the
largest size that would run comfortably (with 1 byte
per parameter) on hardware under $10k. (In contrast,
the 405B model would require closer to $50k, again at
1 byte per parameter.) Some potential users require an
LLM that they can run locally on-premises; they are
unable to use commercial cloud-based LLM services
due to the sensitivity of their data.

In this paper, the GPT-4 links (meaning all the
links that start with “https://chatgpt.com”) go to
webpages that show tests that we conducted. They
show the exact input that we provided to GPT-4. Each
page also shows the full text of the responses from
GPT-4, which often includes extensive step-by-step
analysis of the code and the possible code flaw. We
provide summaries and encourage those interested in

Figure 1. Using an LLM to adjudicate static-analysis alerts

Existing
Static-Analysis

Tool(s)Source Code
Alerts Adjudicated true positives, with trace

LLM-Based
Tool

Adjudicated false positives, with proof sketch

Adjudicated uncertain

Page 7557

additional detail to look at the full interactions shown
at those links.

We note that GPT-4 is reliable at correctly
following instructions to produce JSON output in a
specified schema, making it relatively easy to write a
script to parse the output from a GPT-4 API call. In the
rare case that it fails to produce output in the correct
format, we simply try again until it produces output in
the correct format.

Tables 1-2 (at the end of this paper) summarize
the experiments (labeled “Expt-N”) discussed below.

2.1. Example: GPT-4 Adjudicating an Alert
in the Linux Kernel

In the simplest case, we can just provide the LLM
with an alert and the function containing the flagged
line of code.

Expt-01: We give an example of this case, where
GPT-4 successfully adjudicates an alert for the
vulnerability CVE-2022-41674 (which is about an
integer-overflow leading to a buffer overflow in the
Linux kernel): <https://chatgpt.com/share/4ce0cdae-
47b7-4648-9462-9e0a381ccc37>.

First, our script adds comments identifying two
code locations that the alert specifies. Next, we submit
a prompt to GPT, which has a few sections. The first
part of the prompt is the following text:

I want you to adjudicate whether a static-analysis
alert is correct or a false alarm. The alert warns of a
buffer overflow during `memcpy` on the line ending
with "// ALERT-2" that happens if there is an integer
overflow on the line ending with "// ALERT-1."

The middle part of the prompt consists of the
source code of the alerted-about function. The final
part of the prompt is the following text:

If you can determine whether the alert is correct
or a false alarm, please indicate this determination and
explain your reasoning, and at the end of your
response, say either `{"answer": "true positive"}` or
`{"answer": "false positive"}`. First identify whether
integer overflow can happen. If it can't, then report the
alert is a false positive. If it can happen, then examine
whether it can lead to a buffer overflow.

Step-by-step, GPT-4 determines the following,
concluding that the alert is a true positive:

1. An integer overflow can happen on the line
`cpy_len = mbssid[1] + 2; // ALERT-1` if
`mbssid[1]` is equal to 255, since cpy_len is
an unsigned 8-bit integer.

2. GPT-4 analyzes the relation between the
allocated size of the `new_ie` buffer (into
which `pos` points) and the amount being
copied into it. It determines that a large value
of `mbssid[1]` should (and does) result in a

small allocated buffer and should (but does
not) result in a small amount copied into the
buffer. Due to the integer overflow, a large
amount is actually copied into the small
buffer, overflowing the buffer.

3. It then provides its final answer at the end of
its response, in the format requested by the
prompt: `{"answer": "true positive"}`

We’ve summarized GPT’s determinations above
but it is important to note that GPT-4 more fully states
the basis for its reasoning prior to the determination
and that a human analyst can verify its reasoning.

Expt-02: If asked about the patched version,
GPT-4 correctly identifies that the vulnerability is no
longer present: <https://chatgpt.com/share/7ee8e60b-
1fed-4b67-b77b-7edd289fee90>.

2.2. Mitigating Context-Window Limits

LLMs have a limited context window, which
means that an LLM can usually ingest a single
function but not an entire codebase. Sometimes, the
LLM can make an adjudication based only on the
function containing the flagged line of code. In other
cases, it needs more context. To overcome the context-
window limit, we must summarize the relevant parts
of the codebase enough so that the LLM can digest it.

Some strategies for this have been documented in
the literature:

• Use traditional static analysis to produce
required information, as in Ahmed et al.
(2023).

• Use the LLM itself to generate the function
summaries, as in Li et al. (2023b).

We have also tested two other strategies. One
strategy is: As part of the prompt, direct the LLM to
ask for needed information. In particular, we prompted
the LLM to ask for the definition of a called function
when it needs to know how the called function
behaves. Our tool will then supply it to the LLM.

Figure 2 shows the start of the prompt.

I want you to adjudicate whether a static-analysis
alert is correct or a false alarm. The alert
message is "Null pointer passed to 1st parameter
expecting 'nonnull'". If you need to know the
behavior of other functions (e.g., whether the
function aborts execution), please ask and I will
provide their source code. The alerted line-of-
code is marked in the below snippet with
"/* ALERT */".

Figure 2. Start of prompt for asking for missing
functions

Page 7558

Figure 3 shows the end of the prompt.

Expt-03: An example of this strategy is here:
<https://chatgpt.com/share/b01b0394-55f2-49f7-
8a11-bfda15362297>. In this example, to determine
that a null-pointer alert is a false positive, the LLM
needs the body of the user-defined function
“out_of_memory” to determine that the function never
returns.

A second strategy is to use the LLM to generate
preconditions for avoiding a bad state in a function
with an alert, and then use the LLM to check whether
the callers of the function satisfy the preconditions.

Expt-04: An example of creating a precondition
is provided here: <https://chatgpt.com/share/cfeabe6f-
5757-4c25-be82-f9569f8c9df2>. In this example,
GPT-4 analyzes a function named “greet_user” that
takes a string as an argument. GPT-4 is asked to
adjudicate an alert about a buffer overflow. In its

response, GPT-4 correctly determines that the buffer
overflow can happen only if the length of the input
string is too long. It returns a precondition for avoiding
the buffer overflow:

[{"precond": "strlen(username) <= 52", …}]
Expt-05: Now we ask GPT-4 to use this

precondition: <https://chatgpt.com/share/bbbf7df7-
4fba-43b1-8f46-f09c4bd290cb>. In this example,
GPT-4 analyzes a function that calls the “greet_user”
function mentioned above. GPT-4 is given the
precondition that it previously computed (in a separate
conversation), and it is asked whether this
precondition is satisfied. It correctly determines that
the precondition can be violated. Figure 4 shows an
example of the strategy of creating and using
preconditions.

2.3. GPT-4 Double-Checking its Work

LLMs sometimes make mistakes. One way to
mitigate this is to run the LLM multiple times and
check that the answers aren’t inconsistent except on a
small percentage of runs. Another mitigation is to ask
the LLM to double-check its own work.

Expt-06: Example of GPT-4 double-checking its
work: <https://chatgpt.com/share/78200ee7-37e7-
413d-8b2d-fd9051c28106>. In this example, GPT-4
mistakenly claims that a program has a use-after-free
bug, but it corrects itself when asked to double-check
the reported trace. The first prompt provides the source
code for the function and instructs GPT-4 as follows:

If you can determine whether the alert is correct
or a false alarm, please indicate this
determination and explain your reasoning, and at
the end of your response, say either `{"answer":
"true positive"}` or `{"answer": "false
positive"}`. If you need the source code of other
functions, please indicate which functions you
need, using the format `{"needed_functions":
["func1", "func2", ...]}`, and I will provide their
source code.

Figure 3. End of prompt for asking for missing
functions

Figure 4. Creating and using preconditions.

LLM LLM

Top-level of tool

Prompt: Write a precondition for
the below function to avoid buffer
overflow.

void foo(char* s) {
…

}

{"Justification": "…", "Precond":
"assert(strlen(username) <= 52);"}

Prompt: The function `foo` has this
precondition:
`assert(strlen(username) <= 52);`.
Does the below function always satisfy
this precondition when it calls `foo`?

void bar(…) {
…
foo(s);
…

}

(trace goes here)
{"precond_satisfied": "false"}

{“adjudication": “true positive"}
(justification goes here)

Human
analyst

(optional)

Page 7559

Investigate whether there are any use-after-free
vulnerabilities in this C++ code, thinking step-by-
step. Don't worry about any other problems with
code; focus exclusively on use-after-free bugs. If
you find a use-after-free bug, provide a trace that
demonstrates memory being used after being freed.

GPT-4 responds by defining use-after-free
vulnerabilities: “A use-after-free vulnerability occurs
when a program continues to use a pointer after it has
been freed.” Then, it inspects code for pointers and
allocation and freeing of memory for the pointers it
finds. Next, it provides an analysis, then lists steps of
a trace it mistakenly thinks ends with a use-after-free,
ending with this summary:
The vulnerability arises due to the fact that the `R`
command can potentially free memory that's still
being pointed to by entries in `sub_list`. To fix this,
we should avoid using the reallocated memory from
`getline()` for items that have been copied to the
`sub_list` or ensure we update any relevant pointers
in `sub_list` when renaming in `full_list`.

The next prompt is: “OK, now please double-
check that the trace is correct, stepping thru the code
in detail.” GPT-4 responds with a detailed step-by-step
walkthrough, then ends with:
Upon a detailed step-by-step walkthrough, the trace
provided previously appears to be incorrect. The
use-after-free scenario doesn't occur because when
an item from full_list is copied to sub_list using the
'C' command, a duplicate of the string is created with
strdup(), ensuring that sub_list entries are
independent of any reallocations or frees that might
occur with full_list entries.
Therefore, there is no use-after-free vulnerability
with the described trace in the provided code.

Expt-07: Deleting the strdup call in the above
example introduces a real use-after-free bug. We
removed this call to strdup and separately (i.e., in a
new conversation) asked GPT-4 to analyze this
version of the code. GPT-4 correctly identifies the use-
after-free bug and correctly reports that it is a real bug
when asked to double-check the reported trace in
detail: <https://chatgpt.com/share/36b75aaa-d52a-
480c-8694-f8f62e64fdcc>. GPT-4’s detailed double-
check ends with: “After a detailed step-through, the
trace does hold. The use-after-free vulnerability
indeed exists, and the trace correctly demonstrates it.”

2.4. GPT-4 Finding and Proving Loop
Invariants

GPT-4 has some ability to find and prove loop
invariants.

Expt-08: We tested it on a simple example of
binary search: <https://chatgpt.com/share/88c782ff-
c7b7-4d4c-8cb1-988df4a3f1a8>. The full initial
prompt is shown in Figure 5, including source code for
the function. GPT-4 steps through the code, specifying
a “Maintenance step”, finds the loop invariant (“0 <=
low <= high < n”), and then sketches a proof of the
loop invariant. A second prompt, “Please analyze the
Maintenance step in more detail”, elicits additional
detail from GPT-4 which supports its previous
adjudication. This GPT-4 response ends with: “In both
scenarios, whether we're updating `low` or `high`, we
can see that our loop invariant `0 <= low <= high < n`
is maintained. Thus, during any given iteration of the
loop, the index ̀ mid` always falls within the safe range
`[0, n-1]`, ensuring there is no buffer overflow.”

2.5. Writing proof annotations in Frama-C

There are existing proof verification tools, such as
Frama-C, that can check hand-written proofs of certain

Investigate whether there is a buffer overflow in
the below code, thinking step-by-step. If
possible, generate a precondition that guarantees
absence of a buffer overflow, and give a proof
sketch demonstrating that the precondition
guarantees absence of buffer overflow. If helpful,
find and prove a loop invariant.
``` 
bool binary_search(int arr[], int n, int x) { 
    int low = 0; 
    int high = n - 1; 
 
    while (low <= high) { 
        int mid = low + (high - low) / 2; 
        if (arr[mid] == x) { 
            return true; 
        } 
        if (arr[mid] < x) { 
            low = mid + 1; 
        } else { 
            high = mid - 1; 
        } 
    } 
    return false; 
} 
``` 

Figure 5. Prompt for no-buffer-overflow proof.

Page 7560

program properties. Writing such proofs is often
laborious and requires significant expertise. Using an
LLM to write such proofs would be a big win,
especially since the LLM’s output doesn’t need to be
trusted because it can be externally verified.

Expt-09: We asked GPT-4 to write a precondition
for the following function sufficient to ensure absence
of buffer overflow:
int rand_val_of_array(int* arr, int n) {
 int i = random() % n;
 return arr[i];
}

The conversation with GPT-4 is provided here:
<https://chatgpt.com/share/56894914-aba0-4d5a-
9f67-7ad3071314ad>. At first, GPT-4 produced an
invalid precondition:
/*@ requires \valid(arr + (0..n-1));
 requires n > 0;
 ensures \result == arr[\old(i)];
 */

We then provided GPT-4 with the error message
generated by Frama-C:
$ frama-c -wp temp25.c
[kernel] Parsing temp25.c (with preprocessing)
[kernel:annot-error] temp25.c:3: Warning:
 unbound logic variable i. Ignoring logic
specification of function rand_val_of_array
[kernel] User Error: warning annot-error treated as
fatal error.
[kernel] User Error: stopping on file "temp25.c" that
has errors. Add '-kernel-msg-key pp'
 for preprocessing command.
[kernel] Frama-C aborted: invalid user input.

In response, GPT-4 generated a correct function
precondition:
/*@ requires \valid(arr + (0 .. n - 1));
 requires n > 0;
 ensures \exists integer k; 0 <= k < n && \result
== arr[k];
 */

This example suggests that LLMs have potential for
writing program annotations in languages such as
Frama-C, but the existing state-of-the-art (GPT-4)
doesn’t work very well for this task. Fine-tuning, with
a mix of real-world data and synthetic data, might
enable significantly better performance.

2.6. Detecting multiple bugs in
FormAI_101087.c

Expt-10: Here, we ask GPT-4 to adjudicate an
alert about an invalid pointer dereference in the file
FormAI_101087.c from (Tihanyi, 2023). The
dereference in question is “sock_addr->sin_addr”.

GPT-4 correctly identifies that sock_addr might be
uninitialized at that point of the program. However, it
provides an incomplete explanation and an incomplete
repair, consisting of inserting the following check
before the dereference:
if (!sock_addr) {
 fprintf(stderr, …);
 exit(EXIT_FAILURE);
}

The conversation with GPT-4 is provided here:
<https://chatgpt.com/share/5f9fc88a-6fd1-4664-8e80-
453955e8b8df>.

Expt-11: After applying GPT-4’s suggested
repair, we again asked it whether the expression
“sock_addr->sin_addr” might have an invalid pointer
dereference. This time, it finds the second flaw: The
earlier call to freeifaddrs can free the memory that
sock_addr points to. (In the likely lucky case, this
memory hasn’t been reused and the program works as
expected, which is how the bug escaped testing.)
<https://chatgpt.com/share/6a2a18bc-1f62-4714-
a6d6-b716e131ab48>. Looking at the code at this link,
one might notice that there is another problem with
GPT-4’s initial repair: sock_addr might be
uninitialized at that point in the program.

Expt-12: We asked GPT-4 to identify any use-
before-initialization errors in the function, and it
correctly identified an instance of such an error:
<https://chatgpt.com/share/30c52cf0-d64f-4e2a-
8a00-e7d681c1e710>.

2.7. Llama 3

We ran Llama 3 on the examples in Table 1, using
the same prompts as we used for GPT-4. The saved
Meta AI links show the full responses.

 Expt-01: Llama 3 incorrectly adjudicated the
alerts. It identified that mbssid[1] is an unsigned 8-bit
integer, and the maximum value it can hold is 255.
However, then it incorrectly stated that no integer
overflow happens after adding 2 to that value since
that result “is within the range of size_t (which is
typically an unsigned 32-bit or 64-bit integer type)”.
In fact, the relevant variable is an 8-bit integer (not a
size_t), so integer overflow occurs. Based on that
initial incorrect analysis, Llama 3 then incorrectly
adjudicates the buffer-overflow alert as false.

Expt-02: Llama 3 correctly adjudicates the alert.
However, its reasoning is faulty since it incorrectly
states an unsigned 8-bit integer could not overflow
from trying to hold the result of 255 + 2. In fact, it can.
However, in the line identified in the prompt, that
result instead is assigned to a variable cpy_len of the
larger type (size_t) on the line identified as having a
possible integer overflow. The cpy_len would not

Page 7561

overflow, which results in the alerted-about buffer
overflow adjudication being false. Again, the Llama 3
reasoning is incorrect however, as it extraneously
states that it comes to its conclusion because: “The
value of cpy_len does not directly affect the buffer
size, and any potential overflow would only change
the offset within the buffer, not the buffer size itself.”
Though true, that should not lead to any conclusion
about buffer overflow being possible.

Expt-03: Llama 3 makes the correct final
adjudication “false positive”, just like GPT-4.
Differently than GPT-4, Llama 3 does not ask for
information about the behavior of the out_of_memory
function, which GPT-4 specified was necessary to
adjudicate the alert. Without information that that
function calls abort(), Llama 3 does not have
justification for its stated rationale “the
out_of_memory function is called if the memory
allocation fails, which would prevent the null pointer
from being passed to memcpy”, which it uses for
reasoning towards its adjudication.

Expt-04: Llama 3 identifies that a buffer
overflow could happen, just like GPT-4. Llama 3’s
function precondition specifies that strlen(username)
should be less than 13, which is incorrect. (In contrast,
GPT-4 correctly identifies that strlen(username)
should be less than 52.)

Expt-05: Llama 3 incorrectly determines that the
precondition was satisfied, based on an incorrect
determination that greet_user will always receive a
string of length 53 or less (actually it could receive a
string of length 54 when the input doesn’t include a
newline, as GPT-4 determines). Note that we used the
correct precondition for greet_user in this prompt
rather than the incorrect precondition that Llama
generated in Expt-04.

Expt-06: Initially, Llama 3 comes to the same
incorrect true-positive conclusion as GPT-4, and
offers one similar recommendation for a fix and an
alternative fix by using a different data structure to
manage memory (GPT-4 didn’t suggest the latter
option). After being prompted to double-check its
trace, both LLMs correct their adjudication to
determine there is no use-after-free vulnerability.

Expt-07: Llama 3 initially comes to the correct
initial conclusion that there is a use-after-free
vulnerability. After being prompted to double-check
its work, only Llama 3 incorrectly concludes there is
not a use-after-free vulnerability.

Expt-08: Llama 3 generates only one function
precondition (n >= 0), which is the same as one of the
two function preconditions that GPT-4 generates, but
it misses the other precondition (that the input array
should have at least size n). Both LLMs find the same
loop invariant.

Expt-09: Llama 3 chooses to use ACSL
(ANSI/ISO C Specification Language) to specify
function preconditions, same as GPT-4. GPT-4 (but
not Llama 3) provides detail on how to run Frama-C
to verify the proof annotations. Llama 3’s initial
attempt contains the “requires \valid(arr + (0 .. n-1))”
annotation (like GPT-4) but lacks the “requires n > 0”
annotation. (Note that modulo-by-zero, like division-
by-zero, is undefined behavior in C.) Frama-C reports
timeouts on verifying the division_by_zero and
mem_access properties; when provided with this
information, Llama fails to realize that it needs a
“requires n > 0” annotation.

Expt-10: Llama 3 correctly identifies a potential
invalid pointer dereference, same as GPT-4. Both
LLMs provide code to fix it by checking if sock_addr
is NULL, with slightly different error-handling: GPT-
4 prints a descriptive error message to stderr then exits,
while Llama 3 has a comment for the developer to add
code to handle that or exit.

Expt-11: Llama 3 correctly identifies the
potential invalid pointer dereference, same as GPT-4.
They both recommend fixes that use inetop() instead
of the inettoa() function. Only Llama 3 specifies that
inettoa() is deprecated, but only the provided fix code
from GPT-4 actually uses inetop().

Expt-12: Llama 3 correctly identifies the
potential use-before-initialization error, same as GPT-
4. Both LLMs provide the same code fix. Llama 3
provides a bit of additional unprompted-for secure
coding advice and review related to mutex checking.

3. Related Work with AI/ML for Static
Analysis

To date, there has been a significant amount of
research on using machine learning to aid in efficiently
identifying source code flaws (Flynn et al., 2020;
Kremenek et al., 2004; Ruthruff et al., 2008; Flynn,
2016). Researchers trained the ML using manually-
adjudicated alerts ("labeled data") and features such as
code cohesiveness metrics, lines of code per function
and file, developer ID, and recency-of-code edits
around that code location. Some work found that
aggregating alerts from multiple SA tools for the same
code location improved classifier precision (Flynn,
2016), and other work developed a lexicon and
adjudication rules to enable consistent adjudications to
improve classifier training data (Svoboda et al., 2016).
Classifiers trained on labeled data from the same
codebase generally perform better than those trained
on data from different codebases (latter is called
"cross-project prediction"), but techniques have been
developed that improve cross-project prediction
(Wang et al., 2016). The high cost and time required

Page 7562

for experts to manually adjudicate and create enough
labeled data can be a barrier to creation of accurate
static analysis classifiers. Flynn et al. made novel use
of test suites (IARPA, 2018; Black, 2018) to create
large datasets of labeled (true/false) SA alerts
(augmenting ~7500 manually-adjudicated alerts on
natural code). This resulted in high-precision ML
classifiers for a larger set of CWE types than the
natural dataset alone (Flynn et al., 2018; Flynn et al.,
2021) and created a framework for use with multiple
SA tools, ML classification, adaptive heuristics,
labeled datasets, and test suites (Flynn et al., 2021;
Flynn et al., 2024). Gallagher et al. also used ML for
finding code flaws but used LLVM intermediate
representation instead of source (Gallagher et al.,
2022). Flynn and Gallagher both found that artificial
code and flaw injection can cause classifiers to use
features not helpful with natural code.

4. Limitations and Future Directions

There are several notable limitations of our work.
We have tested only two LLMs: GPT-4 and Llama 3.
Furthermore, the version of Llama 3 that we tested was
the medium size (70B) version rather than the large
size (405B). We also investigated only a small number
of different alert types (CWEs). We explored a few
different types of prompts, but there are many possible
variations that may give noticeably better or worse
performance. Even for exactly the same prompt,
different runs of the LLM can give different results
(except when the LLM’s temperature parameter is set
to zero) due to different random seeds. Further work is
needed to validate and quantitatively measure the
techniques discussed in this paper. For example, we
would want to methodically test the performance of
the LLM on a large random sample of static-analysis
results. This would ideally include running the LLM
multiple times on each alert and conducting a
statistical analysis to quantify the confidence in the
results. To demonstrate greater applicability, we could
apply the methods to a wide range of codebases and
code flaws from multiple static analysis tools. If such
experiments demonstrate that certain LLMs reliably
adjudicate certain types of alerts, then the LLMs could
be employed in practice to reduce the burden on
analysts.

Looking to the future, LLMs may greatly help to
enable formal verification of software, an area that has
long been impractical for large codebases due to the
amount of manual effort involved. Wu et al. (2023)
report success in using LLMs for generating formal
proofs on a benchmark of formal-verification
problems (SoSy Lab, 2023), beating state-of-the-art
formal-verification tools on a number of hard cases.

Generating and proving loop invariants and function
pre-/post-conditions is often a crucial and challenging
part of formal verification, and as evidenced by our
initial experimental results, LLMs show promise for
helping with this task.

5. Acknowledgments

Carnegie Mellon University 2024. This material is
based upon work funded and supported by the
Department of Defense under Contract No. FA8702-
15-D-0002 with Carnegie Mellon University for the
operation of the Software Engineering Institute, a
federally funded research and development center.
References herein to any specific entity, product,
process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation,
or favoring by Carnegie Mellon University or its
Software Engineering Institute nor of Carnegie Mellon
University - Software Engineering Institute by any
such named or represented entity.
NO WARRANTY. THIS CARNEGIE MELLON
UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN
"AS-IS" BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF
ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM
USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.
[DISTRIBUTION STATEMENT A] This material
has been approved for public release and unlimited
distribution. Please see Copyright notice for non-US
Government use and distribution. DM24-1216

6. References

Ahmed, T., Pai, K. S., Devanbu, P., & Barr, E. T. (2023).
Improving few-shot prompts with relevant static
analysis products. arXiv. arXiv:2304.06815
https://arxiv.org/abs/2304.06815v1

Black, P. E. (2018). Juliet 1.3 test suite: Changes from 1.2.
US Department of Commerce, National Institute of
Standards and Technology.
https://nvlpubs.nist.gov/nistpubs/TechnicalNotes/NIS
T.TN.1995.pdf

Chan, A., Kharkar, A., Moghaddam, R. Z., Mohylevskyy,
Y., Helyar, A., Kamal, E., et al. (2023). Transformer-
based vulnerability detection in code at EditTime:

Page 7563

Zero-shot, few-shot, or fine-tuning? arXiv.
arXiv:2306.01754

Cheng, X., Zhou, M., Song, X., Gu, M., & Sun, J. (2016,
June). Automatic fix for C integer errors by precision
improvement. In 2016 IEEE Computer Software and
Applications Conference (Vol. 1, pp. 2-11). IEEE.

Fan, G., Xie, X., Zheng, X., Liang, Y., & Peng, D. (2023).
Static code analysis in the AI era: An in-depth
exploration of the concept, function, and potential of
intelligent code analysis agents. arXiv.
arXiv:2310.08837

Flynn, L. (2018). Challenges and progress: Automating
static analysis alert handling with machine learning.
Carnegie Mellon University Software Engineering
Institute. https://insights.sei.cmu.edu/documents/4174/
2018_017_101_518025.pdf

Flynn, L., et al. (2016). Prioritizing alerts from static analysis
with classification models. Software Engineering
Institute, Research Review.
https://insights.sei.cmu.edu/library/prioritizing-alerts-
from-static-analysis-with-classification-models-2/

Flynn, L., et al. (2020). Static Analysis Classification
Research FY16 20: for Software Assurance
Community of Practice.

Flynn, L., et al. (2021). SCAIFE API (OpenAPI v.3).
Software Engineering Institute site at GitHub.
https://github.com/cmu-sei/SCAIFE-API/

Flynn, L., et al. (2024). SCALe Repository (scaife-scale
branch). Software Engineering Institute site at GitHub.
https://github.com/cmu-sei/SCALe/tree/scaife-scale

Flynn, L., Snavely, W., & Kurtz, Z. (2021). Test suites as a
source of training data for static analysis alert
classifiers. IEEE/ACM International Conference on
Automation of Software Test (AST).

Gallagher, S. K., et al. (2022). LLVM intermediate
representation for code weakness identification.
https://apps.dtic.mil/sti/trecms/pdf/AD1178536.pdf

Intelligence Advanced Research Projects Activity (IARPA)
contributors. (2018). STONESOUP. National Institute
of Standards and Technology (NIST) Software
Assurance Reference Dataset (SARD).
https://samate.nist.gov/SARD/documentation#iarpa

Kremenek, T., et al. (2004). Correlation exploitation in error
ranking. ACM SIGSOFT Software Engineering Notes,
29(6), 83-93.

Li, H., Hao, Y., Zhai, Y., & Qian, Z. (2023a). Assisting static
analysis with large language models: A ChatGPT
experiment. Proceedings of the 31st ACM Joint
European Software Engineering Conference and
Symposium on the Foundations of Software
Engineering. 2107–2111. https://doi.org/10.1145/
3611643.3613078

Li, H., Hao, Y., Zhai, Y., & Qian, Z. (2023b). The
hitchhiker's guide to program analysis: A journey with
large language models. arXiv. arXiv:2308.00245

Lions, J.-L. & Inquiry Board 190. (1996). Ariane 5: Flight
501 failure. European Space Agency.

Meta. (2024). Meta AI chatbot. https://www.meta.ai/
MITRE. (2020). CAPEC-124: Shared resource

manipulation. https://capec.mitre.org/data/definitions/
124.html

MITRE. (2023). Common Attack Pattern Enumerations and
Classifications (CAPEC). https://capec.mitre.org

MITRE. (2024). CWE-1331: Improper isolation of shared
resources in network on chip (NoC).
https://cwe.mitre.org/data/definitions/1331.html

OpenAI. (2023). GPT-4 Technical Report. arXiv preprint
arXiv:2303.08774. https://arxiv.org/abs/2303.08774v1

OWASP. (2021). OWASP Top Ten. https://owasp.org/www-
project-top-ten/

Ruthruff, J. R., et al. (2008). Predicting accurate and
actionable static analysis warnings: an experimental
approach. Proceedings of the 30th international
conference on Software engineering. ACM.

Sherman, M. (2023). Should I trust ChatGPT to review my
program? [Conference presentation]. InfoSec World
2023, Orlando, FL, United States.

SoSy Lab, SV-COMP contributors. (2023). SV-Benchmarks
[Software]. International Competition on Software
Verification. GitHub. Retrieved March 3, 2024, from
https://gitlab.com/sosy-lab/benchmarking/sv-
benchmarks

Svoboda, D., Flynn, L., & Snavely, W. (2016). Static
analysis alert audits: Lexicon & rules. IEEE
Cybersecurity Development (SecDev).

Synopsis. (2024). Coverity DISA ASD STIG report.
Retrieved March 5, 2024, from https://sig-product-
docs.synopsys.com/bundle/coverity-docs/page/reports/
disa-stig/coverity_disa_stig.html

Tihanyi, N., Bisztray, T., Jain, R., Ferrag, M. A., Cordeiro,
L. C., & Mavroeidis, V. (2023, December). The
FormAI Dataset: Generative AI in Software Security
through the Lens of Formal Verification. Proceedings
of the 19th International Conference on Predictive
Models and Data Analytics in Software Engineering.

Wang, S., Liu, T., & Tan, L. (2016). Automatically learning
semantic features for defect prediction. Proceedings of
the 38th International Conference on Software
Engineering.

Wu, H., Barrett, C., & Narodytska, N. (2023). Lemur:
Integrating large language models in automated
program verification. arXiv. arXiv:2310.04870

Yang, A. Z. H., Le Goues, C., Martins, R., & Hellendoorn,
V. (2024). Large language models for test-free fault
localization. Proceedings of IEEE/ACM International
Conference on Software Engineering. Article No. 17.
https://doi.org/10.1145/3597503.3623342

Page 7564

Table 1: URLs for GPT-4 and Llama 3 conversations

Expt # Full URLs for GPT-4 conversations Full URLs for Llama 3 conversations
Expt-01 https://chatgpt.com/share/4ce0cdae-47b7-4648-9462-9e0a381ccc37 https://meta.ai/s/nVjyNWofwQMedi1Q/
Expt-02 https://chatgpt.com/share/7ee8e60b-1fed-4b67-b77b-7edd289fee90 https://meta.ai/s/Dbyg7keJJu94ao3f/
Expt-03 https://chatgpt.com/share/b01b0394-55f2-49f7-8a11-bfda15362297 https://meta.ai/s/Ki1S1eCY657GceMF/
Expt-04 https://chatgpt.com/share/cfeabe6f-5757-4c25-be82-f9569f8c9df2 https://meta.ai/s/tMmxyRYA2N5bTV7X/
Expt-05 https://chatgpt.com/share/bbbf7df7-4fba-43b1-8f46-f09c4bd290cb https://meta.ai/s/Zk1qGbKjz8GrRXBW/
Expt-06 https://chatgpt.com/share/78200ee7-37e7-413d-8b2d-fd9051c28106 https://meta.ai/s/5Ccw75y4pRyhzYHy/

https://meta.ai/s/L6bt2UYMWCUaYfRC/
Expt-07 https://chatgpt.com/share/36b75aaa-d52a-480c-8694-f8f62e64fdcc https://meta.ai/s/jfsByVvTDekXMNTx/

https://meta.ai/s/qu11EiJ9trmfsQCR/
Expt-08 https://chatgpt.com/share/88c782ff-c7b7-4d4c-8cb1-988df4a3f1a8 https://meta.ai/s/ii8x7pTwjQWvJ2aj/
Expt-09 https://chatgpt.com/share/56894914-aba0-4d5a-9f67-7ad3071314ad https://meta.ai/s/bisCooGPtkp1mFJD/

https://meta.ai/s/gPgp8pZwp9Fp1n65/
Expt-10 https://chatgpt.com/share/5f9fc88a-6fd1-4664-8e80-453955e8b8df https://meta.ai/s/NFTpk2xdSJjr6ZNs/
Expt-11 https://chatgpt.com/share/6a2a18bc-1f62-4714-a6d6-b716e131ab48 https://meta.ai/s/VD1szypGbLKQF6ok/
Expt-12 https://chatgpt.com/share/30c52cf0-d64f-4e2a-8a00-e7d681c1e710 https://meta.ai/s/UZk23q1ywYQKNZCJ/

Table 2. Experiments with GPT-4 and Llama 3

Expt

Paper
section

Codebase Lang Correct
adjud-
ication

Code flaw type GPT4:
Initial
result
correct

GPT4:
Second
result
correct

Llama:
Initial
result
correct

Llama:
Second
result
correct

Prompt type

Expt-
01

2.1 Linux
kernel

C true
positive

Integer Overflow,
Buffer Overflow

yes N/A no N/A Step-by-step
reasoning

Expt-
02

2.1 Linux
kernel

C false
positive

Integer Overflow,
Buffer Overflow

yes N/A yes N/A Step-by-step
reasoning

Expt-
03

2.2 Zeek C false
positive

Null Pointer yes N/A yes N/A Ask for needed info

Expt-
04

2.2 Toy
example

C N/A Buffer Overflow yes N/A no N/A Generate
preconditions

Expt-
05

2.2 Toy
example

C true
positive

Buffer Overflow yes N/A no N/A Check
preconditions

Expt-
06

2.3 Toy
example

C++ false
positive

Use-After-Free no yes no yes Double-checking
answer

Expt-
07

2.3 Toy
example

C++ true
positive

Use-After-Free yes yes yes no Double-checking
answer

Expt-
08

2.4 Toy
example

C++ false
positive

Buffer Overflow yes N/A no N/A Find func precond
and loop invariant

Expt-
09

2.5 Toy
example

C N/A Buffer Overflow no yes no no Proof annotations in
Frama-C

Expt-
10

2.6 FormAI
101087

C true
positive

Invalid Pointer
Dereference

yes N/A yes N/A Find and fix invalid
pointer dereference

Expt-
11

2.6 FormAI
101087

C true
positive

Invalid Pointer
Dereference

yes N/A yes N/A Find and fix invalid
pointer dereference

Expt-
12

2.6 FormAI
101087

C true
positive

Use-Before-
Initialization

yes N/A yes N/A Find and fix use-
before-initialization

The column “Paper section” identifies the section of this paper that describes the experiment for GPT-4; the Llama version
is described in Section 2.7. The column “Correct adjudication” indicates whether the static-analysis alert is actually a true
positive or a false positive, as determined by manual inspection. The columns “Initial result correct” and “Second result
correct” indicate whether the LLM produced a correct result in response to the first and second prompt in the conversation,
respectively. Zeek is from https://github.com/zeek/zeek

Page 7565

	1. Introduction
	1.1. Motivation for Improving Static Analysis
	1.2. Latest LLMs as Breakthroughs for Automating Static Analysis Alert Adjudication

	2. Techniques for Using LLMs for Static-Analysis Alert Adjudications and Evaluation of these Techniques
	2.1. Example: GPT-4 Adjudicating an Alert in the Linux Kernel
	2.2. Mitigating Context-Window Limits
	2.3. GPT-4 Double-Checking its Work

	Figure 4. Creating and using preconditions.
	1. Introduction
	1.1. Motivation for Improving Static Analysis
	1.2. Latest LLMs as Breakthroughs for Automating Static Analysis Alert Adjudication
	2.6. Detecting multiple bugs in FormAI_101087.c
	2.7. Llama 3

	3. Related Work with AI/ML for Static Analysis
	4. Limitations and Future Directions
	5. Acknowledgments
	6. References

