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Abstract—Simultaneous localization and mapping (SLAM) is a
widely researched topic in the field of robotics, augmented/virtual
reality and more dominantly in self-driving cars. SLAM is a
technique of building a map of the environment and estimating
the state of the robot in the map in which it is moving,
simultaneously. SLAM has been there for more than 30 years
and has contributed significantly in the industry targeting from
small scale driven applications to large scale, which resulted in
the advent of this decade’s self driving cars. This paper attempts
to give an understanding and progress of SLAM in autonomous
driving industry as well as briefly describes the SLAM techniques
that have contributed significantly to the industry, which were
especially evaluated on KITTI dataset. We have also attempted
to compare various techniques that were presented and made
a rough estimate on why the state of the art approach can be
revised and refurnished to suit the complex understanding of the
environment for effective localization. In the end we have briefly
described the security threats related to autonomous driving
industry and why this is alarming.

I. INTRODUCTION

The ease with which most animals and we human beings
navigate in the environment, perhaps, can be replicated in
robots as well. This complex process of navigation, no wonder
how well we do, can not be easily represented mathematically.
The only way that dumb robots can be made to navigate
in an environment is to represent the environment in some
simpler forms, which can be algorithmically justified. Simul-
taneous Localization and Mapping (SLAM) is an algorithmic
process of a robot/sensor system, which involves perceiving
the environment using sensors and estimating the position of
itself in the environment simultaneously [7]. For a robot, the
environment can be represented as a culmination of different
geometrical structures (landmarks, obstacles etc.) also called
as map, and the pose can be represented as position and
orientation of the robot, and it is generally termed as robot
state. The map assists the human operator in visualizing an
unknown environment and setting up the path of the robot for
navigation. Another significant advantage the map provides
is that it helps in minimizing the error while estimating the
robot state (pose) during navigation. Keeping track of visited
landmarks the robot can detect a loop closure in case it
has revisited a location, thereby minimizing localization error,
which is quite a similar to as how we human beings navigate.
Automatic navigation is also significant part of robot naviga-
tion research, which has resulted in numerous algorithms such
as Rapidly exploring Random Trees (RRT), extended RRT
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(RRT*), Rapidly-exploring Random Graph (RRG), Probabilis-
tic Roadmap (PRM), etc., [9]. These algorithms have directed
many researchers to explore and improve robot navigation in
complex environments. However, the current state of the art
demands for a more improvement since it is yet to be fully
solved for real time dynamic environments.

SLAM is a heavy component in autonomous driving car
systems. This paper attempts to explore the various tech-
niques tested on autonomous driving cars with reference to
KITTI dataset [1] as our benchmark. The drive for SLAM
research was ignited with the inception of robot navigation
in Global Positioning Systems (GPS) denied environments.
Although GPS improves localization, numerous SLAM tech-
niques are targeted for localization with no GPS in the system.
Initially, probabilistic estimation techniques were introduced
like Kalman Filters (KF), which were later extended to Ex-
tended Kalman Filters (EKF), and Unscented Kalman Filters
(UKF) for non-linear systems [7]. Particle filters like Rao-
Blackwellized and Monte Carlo filters have also contributed
significantly to the SLAM research [7]. Another approach that
has grabbed attention is the graph based SLAM where the
robot pose is represented as a node/vertex in a graph, and
the edges represent the errors in measurements from various
sensors. Subsequently the process involves generating a pose
graph and minimizing the error using mathematical techniques
like Gauss-Newton/LevenbergMarquardt [18]. SLAM tech-
niques like Oriented fast and Rotated Briefs-SLAM (ORB2-
SLAM) [24], [25] are the graph-based localization. Another
interesting approach grabbed attention since the advent of deep
learning with focus on Convolutional Neural Networks (CNN).
Quite interesting results were observed especially with the
work on CNN-SLAM [37]. It was shown through experiments
that robot pose or localization could be achieved from a pair of
images acquired by a moving robot through deep learning or
CNN. Even though the CNN-SLAM approach is promising,
this approach has invited few challenges that needs to be
addressed. Deep learning requires high-end Graphic Processing
Unit (GPU) systems, which is still a challenge for robotic
embedded systems. Moreover SLAM systems are seen to be
directed on continuous open-world scenes where the environ-
ment keeps changing. These changes needs to be learned on
a continuous basis for a deep learning system. To our best
knowledge, deep learning has not significantly evolved in the
current state of SLAM to learn the dynamic changes in the
environment robustly. From the various techniques introduced
in SLAM, one can observe that SLAM has an inclination to
combine various fields like signal processing, deep learning
(CNN-SLAM) and more significantly computer vision.

The whole approach of SLAM is based on a robot lo-
calizing itself given the sensor measurements. However the
traditional SLAM algorithms do not extend to perform task
of a robot driving itself to collect more information about
the environment. In a more general sense, traditional SLAM
algorithms only estimates it‘s localization, when it is navigated
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or assisted by external source or through an external command.
There is no ‘conscious‘ effort from the robot to navigate itself
and collect the data from the environment. Active SLAM,
exploration and localization done at the same time, is an
approach that attempts to solve this problem. Active SLAM
basically tries to solve it in 3 steps. The first step specifies the
robot trying to find possible actions (e.g., turn right, turn left,
forward, backward, path selection, etc.) that it could take given
the map space, however it exposes the challenge of increased
computational complexity. The second step says that, even if
an action is confirmed to be taken, the logic behind performing
that action needs to be justified with respect to the goal of the
task, as well as the complexity of the future action that could
be taken to achieve that goal. The final step indicates that
even if the action is performed it is quite difficult to arrive to
a conclusion whether the exploration task has been completed
or not. Based on our knowledge, active SLAM still requires
mathematical proofs at various aspects [7].

Semantic SLAM is another active area of research for
solving the SLAM problem. Based on this approach, the infor-
mation of the environment is stored or perceived as semantics,
where each part is seen as distinguished geometrical object.
In more simpler terms, semantic SLAM tries to build the map
of the environment using objects as references. In traditional
SLAM methods, the whole approach of map building was done
using the idea of aligning points and planes. However, the se-
mantic SLAM approach uses the idea of aligning point clouds
using objects, which are referred or understood as semantics.
This has pushed SLAM community to create more techniques,
which are tasks based rather than path plannings based. It
will also create a room for effective robot-human interaction.
The way it differs from previous SLAM techniques is that
previous approaches were based on already seen environments
(regardless of identification of different objects) while semantic
SLAM works on identifying a place based on objects described
as semantic labels. However, it presents a challenge, which
involves fusing semantic information from various sources at
different times. The problem of consistently fusing it, still
persists [7], [8].

Despite the tremendous progress made in SLAM in the past
30 years, one question still bothers the robotics community,
Is SLAM solved? [7]. Our understanding is that SLAM is an
estimation problem. Given the complexities of the environment
and the uncertainties in the sensor measurements, it is yet to
arrive a complete solution. As of our knowledge, SLAM is still
unsolved. A good solution significantly relies on the environ-
ment, the robot, the uncertainties in the sensor measurements
and the level of performance that we intended to achieve.

This paper primarily focuses on reviewing various SLAM
techniques that were tried and tested on autonomous driving
cars based on the KITTI dataset [1]. We are risking an attempt
to classify various SLAM techniques, which are based on
sensors used for localization and the ability of the SLAM
algorithms to detect a loop closure. A loop closure is a
technique of detecting a visited landmark or a scene in an
environment. As of our knowledge, very few of the state-of
the art algorithms we have encountered has solved the loop
closure problem with respect to this autonomous driving car
dataset.

The remainder of the paper is organized as follows. Section
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IT introduces techniques, which is further divided into Light
Detection and Ranging (Lidar) based techniques (including
Lidar and monocular camera) and stereo-based SLAM tech-
niques. Later on, in section III we also intend to explore the
security aspects in relation to autonomous driving and explore
briefly the threats associated with it. Finally, conclusions are
discussed in Section IV.

II. SLAM IN AUTONOMOUS DRIVING

Since autonomous cars require localization to navigate in
the environment, it is quite obvious to explore the SLAM
techniques in relation to autonomous cars. Most autonomous
cars use Lidars and stereo cameras to perceive the environment
in which it is navigating. However, most techniques that we
have encountered so far, either have attempted to solve the
localization problem on Lidar and Monocular camera or Stereo
camera.

A. Lidar Based Odometry

There are numerous algorithms written for estimating
odometry using Lidar. Implicit Moving Least Squares SLAM
(IMLS-SLAM) [12] is quite popular, which uses scan-to-
model matching framework. Initially, it uses an algorithm to
sample the 3D scans and uses IMLS for surface reconstruction,
which is claimed to have an improved matching quality. One
key factor to note in this work is that it uses only 3D
Lidar sensors for odometry estimation. The work claims to
perform better results than the state of the art algorithm for
odometry estimation, Lidar Odmetery and Mapping (LOAM)
[43], [44]. However, the KITTI website [15] shows that LOAM
outperforms every other algorithm that has been tested on all
the odometry datasets. This contradiction needs to be evaluated
further.

Another work by [17], also called as Lidar-Monocular
Visual Odometry (LIMO), have proposed a method, which
fuses data from both Lidar and monocular camera. It first
calculates the camera features and estimates the depth using
the Lidar data corresponding to those features. Fusing the
data together, it estimates the motion using a technique called
bundle adjustment. The system for this algorithm can be better
explained in steps/blocks. The first block relates to the camera,
where it extracts the features. It includes feature tracking
step and feature association step. Feature tracking is done
using the Viso2 library. The feature association step is mostly
related to extracting the depth of the camera features using
the highly precise Lidar data. To perform these, the Lidar
point cloud is transformed into camera frame and projected
into the image plane. Then, for each features the following
steps are performed. (1) From a projected set of Lidar points,
the algorithm choose a set of points that are around a given
feature. They use a rectangle to define the neighbourhood
around that point. (2) Then it performs a plane estimation
using histograms of depths with fixed bandwidth. This helps
in estimating the depth around corner features as well. (3)
Then the algorithm estimates the plane that fits the feature
using the triangulation method. However depth estimation
for the features on the road includes another preemptive
processing, which includes RANSAC for plane fitting. After
performing the above steps, the next step includes frame to
frame odometry estimation using perspective-n-point problem.
Besides the procedures described above, there are certain steps
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that needs to addressed including strategies to select the data in
order to increase efficiency and robustness. It is quite important
to select only few important landmark features, since there
could be many in a dynamic environment that would increase
computation complexity dramatically. For one of these reasons,
the landmarks are classified into near, middle and far. Finally,
it uses bundle adjustment on these detected features to estimate
the ego motion (aka motion estimation of a camera system).
This approach was entirely evaluated on KITTI dataset. The
estimated trajectories are precise with low drift but it does
not solve the loop closure problem. On the KITTI datasets,
LIMO has the translation error of 0.93% and a rotation error
of 0.00026 deg/meter, which has proved to be a significant
contribution to the robotics community.

A different method proposed in [42], [45] deserves at-
tention. Here, the authors put forward a method that utilizes
depth data to estimate the camera motion. It also uses bundle
adjustment to refine the motion estimation. At the time of
release of this method, it was ranked as the first in the KITTI
benchmark visual odometry methods. As a first step or block,
visual features are detected and tracked. Depth images, which
could be from RGB-D camera or from the point clouds, are
registered in the depth registration block using the estimated
motion. The final step is called the frame-to-frame motion
estimation, which uses feature as input acquired using the
sequence of images, and then these features are fed to the
bundle adjustment procedure. The results were evaluated on
the KITTI dataset where in the urban environment the relative
mean position error was 1.05%, and in the highway it was
1.86%.

Another work by [35] offers a novel technique called
Simultaneous Trajectory Estimation and Mapping (STEAM).
This technique trains a Gaussian process model using the
ground truth. The input to this system is a well detected
features extracted from the point clouds, and the output of
the system is the predicted poses that are computed using the
estimator and the ground truth. In a more deeper level, this
algorithm starts with Lidar point cloud down sampling, where
the heavy data of point clouds is reduced to sparse points
called key points using normalized intensity values. A point
can be selected as a key point or not if it satisfies certain
conditions based on the their proposed algorithm. Then these
sparse point clouds are matched based on Euclidean distance.
For estimating the trajectory, they implement the STEAM
framework in which continuous time trajectory is estimated as
Gaussian process regression. The authors have also mentioned
a significant point that, for continuous-time trajectory estima-
tion, the Gaussian regression problem is quite different from
predicting odometry data. In order to reduce the errors in the
odometry, the algorithm calculates the pose change from frame
to frame and then compares it against the ground truth [5],
[10], [19], [26], [36], [40]. In Gaussian process modelling, the
model is learned from the noisy observations. So it becomes
significant to select the features to detect in order to build a
correct model. The results were evaluated on a KITTI dataset
and the overall error from all the path segments was 1.16%.

A different approach to the SLAM problem is the Closet
Probability and Feature Grid SLAM (CPFG-SLAM) [19],
which has proposed a technique for localizing an unmanned
vehicle in the off-road environment. In essence, it combines the
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features of the point cloud with probability and the occupancy
probability of the grid map. Expected Maximization (EM)
is further used to build the optimization function to match
between point cloud and grid map. This technique comprises
of 3 steps: data pre-processing, pose estimation, and updating
feature grid map. Data pre-processing constitutes the filtering
and classification of the point cloud. Pose estimation comprises
of estimating the pose and the position by matching point
cloud to the map. Finally, updating the point cloud features
consists of extracting point cloud features and updating the
probability of the grid. Later on the EM algorithm is performed
using Levenberg-Marquadt algorithm. Despite high localiza-
tion accuracy, this algorithm is not robust against dynamic
environments, and also it does not solve the loop closure
problem.

Another approach, by previously acclaimed authors [42],
have proposed a real time monocular odometry, which is en-
hanced by depth data. This method is worth mentioning since
it estimates depth from camera motion using sparse depth data
too. It achieves this result by a method called triangulation that
uses previously estimated motion and features from the image
for which depth data is unavailable. Later on, it uses bundle
adjustment to refine the estimated motion. Firstly, it tracks
visual features from the images. Visual features are computed
using Harris corner detection algorithm and is tracked using
Kanade Lucas Tomasi (KLT) method [38]. Next, it uses the
depth data (either from RGB-D camera or a Lidar) to register
the point clouds with the depth using the estimated motion.
The frame to frame motion estimation is done using bundle
adjustment whose inputs are the features extracted from the
sequence of images. One interesting thing to note in this
algorithm is that it uses both known and unknown depths of
features in order to estimate the odometry of the camera.

One of the novel techniques that demands attention is
from [36], which uses a learning approach. This technique
essentially trains a Gaussian process regression model using
data with ground truth. All the high level features that are
derived from the Lidar point clouds are used as input, and
the predicted biases between poses from the estimator, and
the ground truth is the output of the system. However, the
whole process is divided into a number of steps. First, the
point clouds is downsampled to represent only the keypoints
or the well featured points in the point cloud. In this step
it calculates the eigen values of the matrix, which represent
the k-nearest neighbours of the point on the point clouds
and sets a threshold through some functions to classify it
a key feature point. It uses libpointmatcher library to do so
[29]. Secondly, for two such downsampled point clouds, the
point clouds are matched based on their Euclidean distance. It
uses libnabo for matching [13]. Thirdly, it uses the STEAM
framework, as discussed previously by [35], for trajectory
estimation. However, only odometry section of the STEAM
framework is implemented here. More information about how
the error is predicted and corrected in the paper itself, in which
most of it is derived from the STEAM framework. On the
KITTI datasets, it performs relatively better, but not as good
as IMLS and LOAM algorithms as discussed earlier. Based on
the authors, since this is strictly odometry, it does not solve
loop closure problem or reducing the drift in the odometry.
Our understanding is that this algorithm has the potential to
use deep learning framework for better odometry estimation
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and correction rather than using a Gaussian prediction model.

Another novel approach for localization was done by [3]
where a surfel based map is used. The changes in the robot
pose can be estimated by the data association between the
current scan of the Lidar and the model view from the surface
map. This technique is also called as Surfel based Mapping
(SuMa), which builds globally consistent maps. In addition
to that, surfel allows us to represent large scale environment
and also maintains detailed geometric information of the
point clouds. Based on the current rapid development in the
computation, rendering surfels is relatively fast. Odometry
is computed using frame-to-model ICP with point-to-plane
error metric. The error is minimized using Gauss-Newton
minimization algorithm. This algorithm has been evaluated on
KITTTI dataset, which shows that the average rotational error
of 0.00032 deg/m and a translational error of 1.4%.

B. Stereo Based Odometry

Perhaps the current state of the art algorithm for the
stereo visual odometry is the SOFT-SLAM [11] that relies
on feature tracking based algorithm. It builds a feature based
pose graph and then optimizes it by running it in 2 separate
threads. One is odometry thread, and the other is the mapping
thread, which allows it to support large loop closing and
global consistency. It achieves good localization with the use
of featured visual odometry compared to the use of bundle
adjustment, which is computationally very expensive. Unlike
other algorithms like ORB-SLAM?2, SOFT-SLAM algorithms
are more deterministic (e.g., it results in the same output for
the same dataset.)

Among the popular ones, we would like to mention the
contribution of Large Scale Direct monocular SLAM (LSD-
SLAM) [14]. LSD-SLAM has been one of the most popular
SLAM technique. While most of the visual SLAM algorithms
are based on features extracted from the images, LSD-SLAM
algorithm is feature less algorithm, which allows us to build
large-scale consistent maps of the environment in addition to
tracking the motion of the camera. The reason behind this
is that the features being used in most SLAM algorithms is
completely dependent on the type of features being extracted,
which in larger complex environment can be different. In this
algorithm, the global map is represented as a pose graph,
which consists of key frames as vertices, and the 3D similarity
transforms as edges. The classic LSD-SLAM mainly has
a 3-step process: tracking, depth map estimation, and map
optimization. The tracking section tracks new image frames,
which allows to estimate the rigid body frame with respect
to current key frame. Depth estimation uses tracked frames to
refine the current keyframe. The depth map generated after the
depth map estimation block is fed into the global map using
map optimization component.

The above work of LSD-SLAM was also extended to stereo
camera [14]. It is based on almost the same technique, but
the authors have exploited the use of stereo camera setup as
well. In essence, the depth estimation is done concurrently
in 2 setups. One is from the stereo camera setup with a
fixed baseline, and the other is from the multi-view stereo
established from the camera motion. The advantage of having
a stereo with a fixed baseline setup is that it avoids the scale
drift, which typically occurs in monocular LSD-SLAM. It also
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handles sudden illumination changes in the image frames using
direct image alignment. This algorithm has been evaluated on
KITTI dataset, and it is still one of the most popular odometry
estimation algorithm with overall Root Mean Square Error
(RMSE) of 1.21%.

Another stereo approach, given by [21], is based on Exactly
Sparse Delayed State Filter (ESDSF) and EKF on Lie groups
(LG-EKF) [22]. This algorithm preserves the state space
geometry by representing it as a algebraic Lie group. Since the
approach is based on ESDSF, which is derived from Extended
Information Filter, its main advantage is that it uses sparse
information matrix. One of the major features of this method
is that it uses a novel ESDSF on a Lie groups, which not only
presents all the advantages of classical ESDSF but also holds
the state space geometry using Lie groups. This algorithm was
evaluated on KITTI dataset and has been compared to various
other SLAM algorithms like ORB-SLAM?2, Stereo-Parallel
Tracking and Mapping (S-PTAM), and Stereo LSD-SLAM (S-
LSD SLAM). It has shown improvement in the odometry from
most of the popular stereo based SLAM algorithms.

An approach by [6] presents an iterative 2-stage process
for frame-to-frame feature based odometry estimation. This
algorithm attempts to analyze the characteristics of optical
flows and re-projection errors that are generated from the 6-
DOF motion. They have justified the re-projection error that us
generated from the optical flow algorithm, which is dependent
on the coordinate of the features.

One of the algorithms that uses the direct visual odometry
was proposed by [45]. This algorithm attempts to solve the
problem of getting stuck at local optima at large displacements.
It is done by dual Jacobian optimization in fusion with multi-
scale pyramidal scheme. In addition to this, it introduces new
features based on gradients, which is robust to illumination
changes. Finally, a joint odometry is proposed to incorporate
more information from last frame to previous key frames.

Stereo algorithms that tracks key points and selects ef-
fective frames is accomplished by another technique called
Selective SLAM (SSLAM) [4]. The basic idea in this approach
is that the error in localization or pose estimation is because of
uncertainty of 3D points. This uncertainty is higher for distant
points. One key feature is that it does not require any loop
closure or bundle adjustment. It uses Harris corner detector
to detect the features and Gradient Location and Orientation
Histogram (sGLOH) descriptor to match them.

Given the complexity of the graph based SLAM, one
approach, that attempts to simplify the implementation of
graph based SLAM and also challenges other state of the art
SLAM algorithm, is the ProSLAM [30]. It’s main goal is to use
the stereo images to generate a 3D map. As it is quite evident
that landmarks are essential since it has gotten descriptors
and also allows to detect loop closures. In this approach, the
node of the graph represents the pose (rotation and translation
component) and the edge represents the spatial constraints. It is
generated either by tracking the camera motion or by aligning
local maps acquired at distant times, which also leads to loop
closure that is again helpful for re-localization. The whole
approach is taken into 4 steps: (1) Frame point generation,
which takes the pair of stereo images and generates 3D points;
(2) Position tracking, which estimates the relative motion of the
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camera from two subsequent image pairs acquired at different
times as the camera moves; (3) Map management, which
collects all the acquired map (3D point clouds) obtained from
the trajectory and represents it in a compact form; (4) Re-
localization, which compares each acquired point cloud from
the previously acquired map and corrects the pose as well
as the global map of the environment. This algorithm was
evaluated on the KITTI dataset and has showed less than
around 1% of translational error for most of the sequences.
It has outperformed popular SLAM techniques like S-PTAM
[27], [28] and LSD-SLAM but is on a competitive level on
the ORB-SLAM?2 [25].

Most of the SLAM techniques face the challenge of
correcting the scale drift from the acquired images. Research
by [33], has attempted to resolve this issue. This work uses
monocular camera, and it estimates the ground plane using a
novel cue combination framework. It achieves results com-
parable to stereo algorithms and could be carried out over
long data sequences. From every monocular images, it uses
sparse features, that are acquired from the stereo images. At
the same time it performs object detection as well. It provides
a model-learning approach from the training data, which is
related to covariances of the observation cues. Based on the
KITTI dataset evaluation, this technique has outperformed
VISO2 [16], [20] for both monocular and stereo camera.
The above method has attempted to build a bridge between
monocular and stereo structure from motion in addition to
correct the scale drift. From the same researchers, another
work that deserves attention was parallel visual odometry
estimation [34]. The approach is to use multi-threading for
scenes with large motions and rapidly changing images. It uses
three or more CPU parallel threads, and across all the threads
the system estimates the pose using 3D-2D correspondences,
which is again followed by bundle adjustment.

Using features and descriptors has been one of the most
popular approaches to perform localization. [23] uses feature
detection algorithms like Oriented fast and Rotated Briefs
(ORB) to detect the features from the image sequences and
computes feature descriptors using the Fast Retina Key point
(FREAK) algorithm. This approach has been popularly known
as the Circular Freak ORB (CFORB) algorithm. One of the
key advantages it presents is that since it uses ORB features,
it is invariant to both rotation and scale changes. It has
also highlighted that it is invariant to environment to uneven
terrain changes. Another thing to highlight is that it uses two
geometrical constraints in order to remove invalid geometrical
feature matches, which was not implemented in common visual
odometry algorithm. On KITTI benchmark dataset, this has
shown an average translational error of 3.73% and a rotation
error of 0.0107deg/rad. This approach has been tested on
indoor environments as well, which performs slightly better
than the outdoor environment and in addition, it also performs
well in heavy textured environment.

III. SECURITY IN AUTONOMOUS DRIVING

Although autonomous vehicles as projected, may lead to
safer roads, reduced congestion and solve the parking problem,
it still faces the challenge of security over the network.
Since autonomous cars heavily rely on digital systems or
computers, it is very likely to have communication protocols
and frameworks employed in the system. At this point there are
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two levels of networking among autonomous vehicles: Vehicle
to Vehicle - inter vehicle networking around the vicinity of
the vehicle in a local area; and Vehicle to Infrastructure -
networking between vehicle and infrastructure system. Sharing
vital information among vehicles like the speed, location and
activity could assist in efficient navigation on the roads. How-
ever this system of complex architecture across wide networks
can be attacked by various techniques, broadly classified into
2 categories: Active and Passive attacks [41].

Passive attacks are not intended to change the functionality
of the system, rather it is done by a potential attacker to acquire
confidential information about the system. A simple scenario
could be eavesdropping where an attacker could obtain in-
formation by intercepting the data traffic. Even if encryption
is used, a successful decryption can be counted as a passive
attack. Another scenario could be to analyze the traffic signal,
which allows the attacker to understand certain properties like
information transaction based on duration, timing, bandwidth
and number of participants in the traffic [41].

Active attacks are way more inclusive in terms of function-
ality and changing the system as well. There are various ways
where a system could be hacked like man-in-the-middle attack,
Denial of Service (DoS) attack and Replay attack. In man-
in-the middle attack [31], [32], the attacker can fraudulently
get access to the system. In addition to this, a man-in-the-
middle attack send an acknowledgement to the sender that it
is a authorized user thereby deceiving the whole system. In
a replay attack, the attacker can observe the data traffic and
replay a previous message and could force the system into an
unstable state or could request for further data for attacking at
different levels of security. DoS simply means that the system
has been compromised, which could be done by disabling
the communication services or jamming the communication
channels.

With respect to autonomous cars, there has been demon-
strations by researches who have successfully attempted to
gain a complete control of the autonomous system including
disabling the brakes, stopping the engine, locking the doors
etc., and most importantly completely ignoring the driver input
signals. Most of the autonomous cars follow the Controller
Area Network (CAN)-protocol. However this has presented
various vulnerabilities in the communication in the automotive
industry. Primarily being, CAN has broadcast nature, and it
sends packets to all the nodes in the network, which might
allow the attacker to insert malicious component easily. CAN
is also vulnerable to DoS attacks. In addition, CAN has no
proper authentication mechanism. Anyone can send packet to
any node quite easily. It is quite important to mention that
any attacker can attack an autonomous system easily, which
makes it very essential for further research improvements in
the autonomous driving industry [2], [39], [41].

IV. CONCLUSIONS

This paper has briefly described various SLAM techniques
in relation to autonomous driving evaluated especially in
KITTI dataset. We have attempted to classify the SLAM
techniques in both Lidar-based odometry and Stereo-based
odometry. In the end, we have also attempted to describe
the security vulnerabilities in the autonomous driving systems.
We have described various types of attacks that have been
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introduced and demonstrated by various researchers, which
makes it a popular topic for future research. We intend to focus
our future research on improving the loop closure detection
robustly using graph based SLAM techniques with a primary
target on evaluating our approach on KITTI dataset. In addition
to it, we also intend to focus on including and validating
deep learning approach to SLAM, since it probably provides
promising results for data analysis.
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