Up to index of Isabelle/HOL/HOL-Complex/NumberTheory
theory EulerFermat = BijectionRel + IntFact:(* Title: HOL/NumberTheory/EulerFermat.thy ID: $Id: EulerFermat.thy,v 1.11 2003/08/29 13:19:32 ballarin Exp $ Author: Thomas M. Rasmussen Copyright 2000 University of Cambridge Changes by Jeremy Avigad, 2003/02/21: repaired proof of Bnor_prime (removed use of zprime_def) *) header {* Fermat's Little Theorem extended to Euler's Totient function *} theory EulerFermat = BijectionRel + IntFact: text {* Fermat's Little Theorem extended to Euler's Totient function. More abstract approach than Boyer-Moore (which seems necessary to achieve the extended version). *} subsection {* Definitions and lemmas *} consts RsetR :: "int => int set set" BnorRset :: "int * int => int set" norRRset :: "int => int set" noXRRset :: "int => int => int set" phi :: "int => nat" is_RRset :: "int set => int => bool" RRset2norRR :: "int set => int => int => int" inductive "RsetR m" intros empty [simp]: "{} ∈ RsetR m" insert: "A ∈ RsetR m ==> zgcd (a, m) = 1 ==> ∀a'. a' ∈ A --> ¬ zcong a a' m ==> insert a A ∈ RsetR m" recdef BnorRset "measure ((λ(a, m). nat a) :: int * int => nat)" "BnorRset (a, m) = (if 0 < a then let na = BnorRset (a - 1, m) in (if zgcd (a, m) = 1 then insert a na else na) else {})" defs norRRset_def: "norRRset m == BnorRset (m - 1, m)" noXRRset_def: "noXRRset m x == (λa. a * x) ` norRRset m" phi_def: "phi m == card (norRRset m)" is_RRset_def: "is_RRset A m == A ∈ RsetR m ∧ card A = phi m" RRset2norRR_def: "RRset2norRR A m a == (if 1 < m ∧ is_RRset A m ∧ a ∈ A then SOME b. zcong a b m ∧ b ∈ norRRset m else 0)" constdefs zcongm :: "int => int => int => bool" "zcongm m == λa b. zcong a b m" lemma abs_eq_1_iff [iff]: "(abs z = (1::int)) = (z = 1 ∨ z = -1)" -- {* LCP: not sure why this lemma is needed now *} by (auto simp add: zabs_def) text {* \medskip @{text norRRset} *} declare BnorRset.simps [simp del] lemma BnorRset_induct: "(!!a m. P {} a m) ==> (!!a m. 0 < (a::int) ==> P (BnorRset (a - 1, m::int)) (a - 1) m ==> P (BnorRset(a,m)) a m) ==> P (BnorRset(u,v)) u v" proof - case rule_context show ?thesis apply (rule BnorRset.induct, safe) apply (case_tac [2] "0 < a") apply (rule_tac [2] rule_context, simp_all) apply (simp_all add: BnorRset.simps rule_context) done qed lemma Bnor_mem_zle [rule_format]: "b ∈ BnorRset (a, m) --> b ≤ a" apply (induct a m rule: BnorRset_induct) prefer 2 apply (subst BnorRset.simps) apply (unfold Let_def, auto) done lemma Bnor_mem_zle_swap: "a < b ==> b ∉ BnorRset (a, m)" by (auto dest: Bnor_mem_zle) lemma Bnor_mem_zg [rule_format]: "b ∈ BnorRset (a, m) --> 0 < b" apply (induct a m rule: BnorRset_induct) prefer 2 apply (subst BnorRset.simps) apply (unfold Let_def, auto) done lemma Bnor_mem_if [rule_format]: "zgcd (b, m) = 1 --> 0 < b --> b ≤ a --> b ∈ BnorRset (a, m)" apply (induct a m rule: BnorRset.induct, auto) apply (case_tac "a = b") prefer 2 apply (simp add: order_less_le) apply (simp (no_asm_simp)) prefer 2 apply (subst BnorRset.simps) defer apply (subst BnorRset.simps) apply (unfold Let_def, auto) done lemma Bnor_in_RsetR [rule_format]: "a < m --> BnorRset (a, m) ∈ RsetR m" apply (induct a m rule: BnorRset_induct, simp) apply (subst BnorRset.simps) apply (unfold Let_def, auto) apply (rule RsetR.insert) apply (rule_tac [3] allI) apply (rule_tac [3] impI) apply (rule_tac [3] zcong_not) apply (subgoal_tac [6] "a' ≤ a - 1") apply (rule_tac [7] Bnor_mem_zle) apply (rule_tac [5] Bnor_mem_zg, auto) done lemma Bnor_fin: "finite (BnorRset (a, m))" apply (induct a m rule: BnorRset_induct) prefer 2 apply (subst BnorRset.simps) apply (unfold Let_def, auto) done lemma norR_mem_unique_aux: "a ≤ b - 1 ==> a < (b::int)" apply auto done lemma norR_mem_unique: "1 < m ==> zgcd (a, m) = 1 ==> ∃!b. [a = b] (mod m) ∧ b ∈ norRRset m" apply (unfold norRRset_def) apply (cut_tac a = a and m = m in zcong_zless_unique, auto) apply (rule_tac [2] m = m in zcong_zless_imp_eq) apply (auto intro: Bnor_mem_zle Bnor_mem_zg zcong_trans order_less_imp_le norR_mem_unique_aux simp add: zcong_sym) apply (rule_tac x = b in exI, safe) apply (rule Bnor_mem_if) apply (case_tac [2] "b = 0") apply (auto intro: order_less_le [THEN iffD2]) prefer 2 apply (simp only: zcong_def) apply (subgoal_tac "zgcd (a, m) = m") prefer 2 apply (subst zdvd_iff_zgcd [symmetric]) apply (rule_tac [4] zgcd_zcong_zgcd) apply (simp_all add: zdvd_zminus_iff zcong_sym) done text {* \medskip @{term noXRRset} *} lemma RRset_gcd [rule_format]: "is_RRset A m ==> a ∈ A --> zgcd (a, m) = 1" apply (unfold is_RRset_def) apply (rule RsetR.induct, auto) done lemma RsetR_zmult_mono: "A ∈ RsetR m ==> 0 < m ==> zgcd (x, m) = 1 ==> (λa. a * x) ` A ∈ RsetR m" apply (erule RsetR.induct, simp_all) apply (rule RsetR.insert, auto) apply (blast intro: zgcd_zgcd_zmult) apply (simp add: zcong_cancel) done lemma card_nor_eq_noX: "0 < m ==> zgcd (x, m) = 1 ==> card (noXRRset m x) = card (norRRset m)" apply (unfold norRRset_def noXRRset_def) apply (rule card_image) apply (auto simp add: inj_on_def Bnor_fin) apply (simp add: BnorRset.simps) done lemma noX_is_RRset: "0 < m ==> zgcd (x, m) = 1 ==> is_RRset (noXRRset m x) m" apply (unfold is_RRset_def phi_def) apply (auto simp add: card_nor_eq_noX) apply (unfold noXRRset_def norRRset_def) apply (rule RsetR_zmult_mono) apply (rule Bnor_in_RsetR, simp_all) done lemma aux_some: "1 < m ==> is_RRset A m ==> a ∈ A ==> zcong a (SOME b. [a = b] (mod m) ∧ b ∈ norRRset m) m ∧ (SOME b. [a = b] (mod m) ∧ b ∈ norRRset m) ∈ norRRset m" apply (rule norR_mem_unique [THEN ex1_implies_ex, THEN someI_ex]) apply (rule_tac [2] RRset_gcd, simp_all) done lemma RRset2norRR_correct: "1 < m ==> is_RRset A m ==> a ∈ A ==> [a = RRset2norRR A m a] (mod m) ∧ RRset2norRR A m a ∈ norRRset m" apply (unfold RRset2norRR_def, simp) apply (rule aux_some, simp_all) done lemmas RRset2norRR_correct1 = RRset2norRR_correct [THEN conjunct1, standard] lemmas RRset2norRR_correct2 = RRset2norRR_correct [THEN conjunct2, standard] lemma RsetR_fin: "A ∈ RsetR m ==> finite A" by (erule RsetR.induct, auto) lemma RRset_zcong_eq [rule_format]: "1 < m ==> is_RRset A m ==> [a = b] (mod m) ==> a ∈ A --> b ∈ A --> a = b" apply (unfold is_RRset_def) apply (rule RsetR.induct) apply (auto simp add: zcong_sym) done lemma aux: "P (SOME a. P a) ==> Q (SOME a. Q a) ==> (SOME a. P a) = (SOME a. Q a) ==> ∃a. P a ∧ Q a" apply auto done lemma RRset2norRR_inj: "1 < m ==> is_RRset A m ==> inj_on (RRset2norRR A m) A" apply (unfold RRset2norRR_def inj_on_def, auto) apply (subgoal_tac "∃b. ([x = b] (mod m) ∧ b ∈ norRRset m) ∧ ([y = b] (mod m) ∧ b ∈ norRRset m)") apply (rule_tac [2] aux) apply (rule_tac [3] aux_some) apply (rule_tac [2] aux_some) apply (rule RRset_zcong_eq, auto) apply (rule_tac b = b in zcong_trans) apply (simp_all add: zcong_sym) done lemma RRset2norRR_eq_norR: "1 < m ==> is_RRset A m ==> RRset2norRR A m ` A = norRRset m" apply (rule card_seteq) prefer 3 apply (subst card_image) apply (rule_tac [2] RRset2norRR_inj, auto) apply (rule_tac [4] RRset2norRR_correct2, auto) apply (unfold is_RRset_def phi_def norRRset_def) apply (auto simp add: RsetR_fin Bnor_fin) done lemma Bnor_prod_power_aux: "a ∉ A ==> inj f ==> f a ∉ f ` A" by (unfold inj_on_def, auto) lemma Bnor_prod_power [rule_format]: "x ≠ 0 ==> a < m --> ssetprod ((λa. a * x) ` BnorRset (a, m)) = ssetprod (BnorRset(a, m)) * x^card (BnorRset (a, m))" apply (induct a m rule: BnorRset_induct) prefer 2 apply (subst BnorRset.simps) apply (unfold Let_def, auto) apply (simp add: Bnor_fin Bnor_mem_zle_swap) apply (subst ssetprod_insert) apply (rule_tac [2] Bnor_prod_power_aux) apply (unfold inj_on_def) apply (simp_all add: zmult_ac Bnor_fin finite_imageI Bnor_mem_zle_swap) done subsection {* Fermat *} lemma bijzcong_zcong_prod: "(A, B) ∈ bijR (zcongm m) ==> [ssetprod A = ssetprod B] (mod m)" apply (unfold zcongm_def) apply (erule bijR.induct) apply (subgoal_tac [2] "a ∉ A ∧ b ∉ B ∧ finite A ∧ finite B") apply (auto intro: fin_bijRl fin_bijRr zcong_zmult) done lemma Bnor_prod_zgcd [rule_format]: "a < m --> zgcd (ssetprod (BnorRset (a, m)), m) = 1" apply (induct a m rule: BnorRset_induct) prefer 2 apply (subst BnorRset.simps) apply (unfold Let_def, auto) apply (simp add: Bnor_fin Bnor_mem_zle_swap) apply (blast intro: zgcd_zgcd_zmult) done theorem Euler_Fermat: "0 < m ==> zgcd (x, m) = 1 ==> [x^(phi m) = 1] (mod m)" apply (unfold norRRset_def phi_def) apply (case_tac "x = 0") apply (case_tac [2] "m = 1") apply (rule_tac [3] iffD1) apply (rule_tac [3] k = "ssetprod (BnorRset (m - 1, m))" in zcong_cancel2) prefer 5 apply (subst Bnor_prod_power [symmetric]) apply (rule_tac [7] Bnor_prod_zgcd, simp_all) apply (rule bijzcong_zcong_prod) apply (fold norRRset_def noXRRset_def) apply (subst RRset2norRR_eq_norR [symmetric]) apply (rule_tac [3] inj_func_bijR, auto) apply (unfold zcongm_def) apply (rule_tac [2] RRset2norRR_correct1) apply (rule_tac [5] RRset2norRR_inj) apply (auto intro: order_less_le [THEN iffD2] simp add: noX_is_RRset) apply (unfold noXRRset_def norRRset_def) apply (rule finite_imageI) apply (rule Bnor_fin) done lemma Bnor_prime [rule_format (no_asm)]: "p ∈ zprime ==> a < p --> (∀b. 0 < b ∧ b ≤ a --> zgcd (b, p) = 1) --> card (BnorRset (a, p)) = nat a" apply (auto simp add: zless_zprime_imp_zrelprime) apply (induct a p rule: BnorRset.induct) apply (subst BnorRset.simps) apply (unfold Let_def, auto) apply (subgoal_tac "finite (BnorRset (a - 1,m))") apply (subgoal_tac "a ~: BnorRset (a - 1,m)") apply (auto simp add: card_insert_disjoint Suc_nat_eq_nat_zadd1) apply (frule Bnor_mem_zle, arith) apply (frule Bnor_fin) done lemma phi_prime: "p ∈ zprime ==> phi p = nat (p - 1)" apply (unfold phi_def norRRset_def) apply (rule Bnor_prime, auto) apply (erule zless_zprime_imp_zrelprime, simp_all) done theorem Little_Fermat: "p ∈ zprime ==> ¬ p dvd x ==> [x^(nat (p - 1)) = 1] (mod p)" apply (subst phi_prime [symmetric]) apply (rule_tac [2] Euler_Fermat) apply (erule_tac [3] zprime_imp_zrelprime) apply (unfold zprime_def, auto) done end
lemma abs_eq_1_iff:
(¦z¦ = 1) = (z = 1 ∨ z = -1)
lemma BnorRset_induct:
[| !!a m. P {} a m; !!a m. [| 0 < a; P (BnorRset (a - 1, m)) (a - 1) m |] ==> P (BnorRset (a, m)) a m |] ==> P (BnorRset (u, v)) u v
lemma Bnor_mem_zle:
b ∈ BnorRset (a, m) ==> b ≤ a
lemma Bnor_mem_zle_swap:
a < b ==> b ∉ BnorRset (a, m)
lemma Bnor_mem_zg:
b ∈ BnorRset (a, m) ==> 0 < b
lemma Bnor_mem_if:
[| zgcd (b, m) = 1; 0 < b; b ≤ a |] ==> b ∈ BnorRset (a, m)
lemma Bnor_in_RsetR:
a < m ==> BnorRset (a, m) ∈ RsetR m
lemma Bnor_fin:
finite (BnorRset (a, m))
lemma norR_mem_unique_aux:
a ≤ b - 1 ==> a < b
lemma norR_mem_unique:
[| 1 < m; zgcd (a, m) = 1 |] ==> ∃!b. [a = b] (mod m) ∧ b ∈ norRRset m
lemma RRset_gcd:
[| is_RRset A m; a ∈ A |] ==> zgcd (a, m) = 1
lemma RsetR_zmult_mono:
[| A ∈ RsetR m; 0 < m; zgcd (x, m) = 1 |] ==> (%a. a * x) ` A ∈ RsetR m
lemma card_nor_eq_noX:
[| 0 < m; zgcd (x, m) = 1 |] ==> card (noXRRset m x) = card (norRRset m)
lemma noX_is_RRset:
[| 0 < m; zgcd (x, m) = 1 |] ==> is_RRset (noXRRset m x) m
lemma aux_some:
[| 1 < m; is_RRset A m; a ∈ A |] ==> [a = SOME b. [a = b] (mod m) ∧ b ∈ norRRset m] (mod m) ∧ (SOME b. [a = b] (mod m) ∧ b ∈ norRRset m) ∈ norRRset m
lemma RRset2norRR_correct:
[| 1 < m; is_RRset A m; a ∈ A |] ==> [a = RRset2norRR A m a] (mod m) ∧ RRset2norRR A m a ∈ norRRset m
lemmas RRset2norRR_correct1:
[| 1 < m; is_RRset A m; a ∈ A |] ==> [a = RRset2norRR A m a] (mod m)
lemmas RRset2norRR_correct2:
[| 1 < m; is_RRset A m; a ∈ A |] ==> RRset2norRR A m a ∈ norRRset m
lemma RsetR_fin:
A ∈ RsetR m ==> finite A
lemma RRset_zcong_eq:
[| 1 < m; is_RRset A m; [a = b] (mod m); a ∈ A; b ∈ A |] ==> a = b
lemma aux:
[| P (SOME a. P a); Q (SOME a. Q a); (SOME a. P a) = (SOME a. Q a) |] ==> ∃a. P a ∧ Q a
lemma RRset2norRR_inj:
[| 1 < m; is_RRset A m |] ==> inj_on (RRset2norRR A m) A
lemma RRset2norRR_eq_norR:
[| 1 < m; is_RRset A m |] ==> RRset2norRR A m ` A = norRRset m
lemma Bnor_prod_power_aux:
[| a ∉ A; inj f |] ==> f a ∉ f ` A
lemma Bnor_prod_power:
[| x ≠ 0; a < m |] ==> ssetprod ((%a. a * x) ` BnorRset (a, m)) = ssetprod (BnorRset (a, m)) * x ^ card (BnorRset (a, m))
lemma bijzcong_zcong_prod:
(A, B) ∈ bijR (zcongm m) ==> [ssetprod A = ssetprod B] (mod m)
lemma Bnor_prod_zgcd:
a < m ==> zgcd (ssetprod (BnorRset (a, m)), m) = 1
theorem Euler_Fermat:
[| 0 < m; zgcd (x, m) = 1 |] ==> [x ^ phi m = 1] (mod m)
lemma Bnor_prime:
[| p ∈ zprime; a < p; ∀b. 0 < b ∧ b ≤ a --> zgcd (b, p) = 1 |] ==> card (BnorRset (a, p)) = nat a
lemma phi_prime:
p ∈ zprime ==> phi p = nat (p - 1)
theorem Little_Fermat:
[| p ∈ zprime; ¬ p dvd x |] ==> [x ^ nat (p - 1) = 1] (mod p)