Up to index of Isabelle/HOL/HOL-Complex/NumberTheory
theory WilsonRuss = EulerFermat:(* Title: HOL/NumberTheory/WilsonRuss.thy ID: $Id: WilsonRuss.thy,v 1.11 2003/12/03 09:49:36 paulson Exp $ Author: Thomas M. Rasmussen Copyright 2000 University of Cambridge Changes by Jeremy Avigad, 2003/02/21: repaired proof of prime_g_5 *) header {* Wilson's Theorem according to Russinoff *} theory WilsonRuss = EulerFermat: text {* Wilson's Theorem following quite closely Russinoff's approach using Boyer-Moore (using finite sets instead of lists, though). *} subsection {* Definitions and lemmas *} consts inv :: "int => int => int" wset :: "int * int => int set" defs inv_def: "inv p a == (a^(nat (p - 2))) mod p" recdef wset "measure ((λ(a, p). nat a) :: int * int => nat)" "wset (a, p) = (if 1 < a then let ws = wset (a - 1, p) in (if a ∈ ws then ws else insert a (insert (inv p a) ws)) else {})" text {* \medskip @{term [source] inv} *} lemma inv_is_inv_aux: "1 < m ==> Suc (nat (m - 2)) = nat (m - 1)" by (subst int_int_eq [symmetric], auto) lemma inv_is_inv: "p ∈ zprime ==> 0 < a ==> a < p ==> [a * inv p a = 1] (mod p)" apply (unfold inv_def) apply (subst zcong_zmod) apply (subst zmod_zmult1_eq [symmetric]) apply (subst zcong_zmod [symmetric]) apply (subst power_Suc [symmetric]) apply (subst inv_is_inv_aux) apply (erule_tac [2] Little_Fermat) apply (erule_tac [2] zdvd_not_zless) apply (unfold zprime_def, auto) done lemma inv_distinct: "p ∈ zprime ==> 1 < a ==> a < p - 1 ==> a ≠ inv p a" apply safe apply (cut_tac a = a and p = p in zcong_square) apply (cut_tac [3] a = a and p = p in inv_is_inv, auto) apply (subgoal_tac "a = 1") apply (rule_tac [2] m = p in zcong_zless_imp_eq) apply (subgoal_tac [7] "a = p - 1") apply (rule_tac [8] m = p in zcong_zless_imp_eq, auto) done lemma inv_not_0: "p ∈ zprime ==> 1 < a ==> a < p - 1 ==> inv p a ≠ 0" apply safe apply (cut_tac a = a and p = p in inv_is_inv) apply (unfold zcong_def, auto) apply (subgoal_tac "¬ p dvd 1") apply (rule_tac [2] zdvd_not_zless) apply (subgoal_tac "p dvd 1") prefer 2 apply (subst zdvd_zminus_iff [symmetric], auto) done lemma inv_not_1: "p ∈ zprime ==> 1 < a ==> a < p - 1 ==> inv p a ≠ 1" apply safe apply (cut_tac a = a and p = p in inv_is_inv) prefer 4 apply simp apply (subgoal_tac "a = 1") apply (rule_tac [2] zcong_zless_imp_eq, auto) done lemma inv_not_p_minus_1_aux: "[a * (p - 1) = 1] (mod p) = [a = p - 1] (mod p)" apply (unfold zcong_def) apply (simp add: Ring_and_Field.diff_diff_eq diff_diff_eq2 zdiff_zmult_distrib2) apply (rule_tac s = "p dvd -((a + 1) + (p * -a))" in trans) apply (simp add: mult_commute) apply (subst zdvd_zminus_iff) apply (subst zdvd_reduce) apply (rule_tac s = "p dvd (a + 1) + (p * -1)" in trans) apply (subst zdvd_reduce, auto) done lemma inv_not_p_minus_1: "p ∈ zprime ==> 1 < a ==> a < p - 1 ==> inv p a ≠ p - 1" apply safe apply (cut_tac a = a and p = p in inv_is_inv, auto) apply (simp add: inv_not_p_minus_1_aux) apply (subgoal_tac "a = p - 1") apply (rule_tac [2] zcong_zless_imp_eq, auto) done lemma inv_g_1: "p ∈ zprime ==> 1 < a ==> a < p - 1 ==> 1 < inv p a" apply (case_tac "0≤ inv p a") apply (subgoal_tac "inv p a ≠ 1") apply (subgoal_tac "inv p a ≠ 0") apply (subst order_less_le) apply (subst zle_add1_eq_le [symmetric]) apply (subst order_less_le) apply (rule_tac [2] inv_not_0) apply (rule_tac [5] inv_not_1, auto) apply (unfold inv_def zprime_def, simp) done lemma inv_less_p_minus_1: "p ∈ zprime ==> 1 < a ==> a < p - 1 ==> inv p a < p - 1" apply (case_tac "inv p a < p") apply (subst order_less_le) apply (simp add: inv_not_p_minus_1, auto) apply (unfold inv_def zprime_def, simp) done lemma inv_inv_aux: "5 ≤ p ==> nat (p - 2) * nat (p - 2) = Suc (nat (p - 1) * nat (p - 3))" apply (subst int_int_eq [symmetric]) apply (simp add: zmult_int [symmetric]) apply (simp add: zdiff_zmult_distrib zdiff_zmult_distrib2) done lemma zcong_zpower_zmult: "[x^y = 1] (mod p) ==> [x^(y * z) = 1] (mod p)" apply (induct z) apply (auto simp add: zpower_zadd_distrib) apply (subgoal_tac "zcong (x^y * x^(y * n)) (1 * 1) p") apply (rule_tac [2] zcong_zmult, simp_all) done lemma inv_inv: "p ∈ zprime ==> 5 ≤ p ==> 0 < a ==> a < p ==> inv p (inv p a) = a" apply (unfold inv_def) apply (subst zpower_zmod) apply (subst zpower_zpower) apply (rule zcong_zless_imp_eq) prefer 5 apply (subst zcong_zmod) apply (subst mod_mod_trivial) apply (subst zcong_zmod [symmetric]) apply (subst inv_inv_aux) apply (subgoal_tac [2] "zcong (a * a^(nat (p - 1) * nat (p - 3))) (a * 1) p") apply (rule_tac [3] zcong_zmult) apply (rule_tac [4] zcong_zpower_zmult) apply (erule_tac [4] Little_Fermat) apply (rule_tac [4] zdvd_not_zless, simp_all) done text {* \medskip @{term wset} *} declare wset.simps [simp del] lemma wset_induct: "(!!a p. P {} a p) ==> (!!a p. 1 < (a::int) ==> P (wset (a - 1, p)) (a - 1) p ==> P (wset (a, p)) a p) ==> P (wset (u, v)) u v" proof - case rule_context show ?thesis apply (rule wset.induct, safe) apply (case_tac [2] "1 < a") apply (rule_tac [2] rule_context, simp_all) apply (simp_all add: wset.simps rule_context) done qed lemma wset_mem_imp_or [rule_format]: "1 < a ==> b ∉ wset (a - 1, p) ==> b ∈ wset (a, p) --> b = a ∨ b = inv p a" apply (subst wset.simps) apply (unfold Let_def, simp) done lemma wset_mem_mem [simp]: "1 < a ==> a ∈ wset (a, p)" apply (subst wset.simps) apply (unfold Let_def, simp) done lemma wset_subset: "1 < a ==> b ∈ wset (a - 1, p) ==> b ∈ wset (a, p)" apply (subst wset.simps) apply (unfold Let_def, auto) done lemma wset_g_1 [rule_format]: "p ∈ zprime --> a < p - 1 --> b ∈ wset (a, p) --> 1 < b" apply (induct a p rule: wset_induct, auto) apply (case_tac "b = a") apply (case_tac [2] "b = inv p a") apply (subgoal_tac [3] "b = a ∨ b = inv p a") apply (rule_tac [4] wset_mem_imp_or) prefer 2 apply simp apply (rule inv_g_1, auto) done lemma wset_less [rule_format]: "p ∈ zprime --> a < p - 1 --> b ∈ wset (a, p) --> b < p - 1" apply (induct a p rule: wset_induct, auto) apply (case_tac "b = a") apply (case_tac [2] "b = inv p a") apply (subgoal_tac [3] "b = a ∨ b = inv p a") apply (rule_tac [4] wset_mem_imp_or) prefer 2 apply simp apply (rule inv_less_p_minus_1, auto) done lemma wset_mem [rule_format]: "p ∈ zprime --> a < p - 1 --> 1 < b --> b ≤ a --> b ∈ wset (a, p)" apply (induct a p rule: wset.induct, auto) apply (subgoal_tac "b = a") apply (rule_tac [2] zle_anti_sym) apply (rule_tac [4] wset_subset) apply (simp (no_asm_simp)) apply auto done lemma wset_mem_inv_mem [rule_format]: "p ∈ zprime --> 5 ≤ p --> a < p - 1 --> b ∈ wset (a, p) --> inv p b ∈ wset (a, p)" apply (induct a p rule: wset_induct, auto) apply (case_tac "b = a") apply (subst wset.simps) apply (unfold Let_def) apply (rule_tac [3] wset_subset, auto) apply (case_tac "b = inv p a") apply (simp (no_asm_simp)) apply (subst inv_inv) apply (subgoal_tac [6] "b = a ∨ b = inv p a") apply (rule_tac [7] wset_mem_imp_or, auto) done lemma wset_inv_mem_mem: "p ∈ zprime ==> 5 ≤ p ==> a < p - 1 ==> 1 < b ==> b < p - 1 ==> inv p b ∈ wset (a, p) ==> b ∈ wset (a, p)" apply (rule_tac s = "inv p (inv p b)" and t = b in subst) apply (rule_tac [2] wset_mem_inv_mem) apply (rule inv_inv, simp_all) done lemma wset_fin: "finite (wset (a, p))" apply (induct a p rule: wset_induct) prefer 2 apply (subst wset.simps) apply (unfold Let_def, auto) done lemma wset_zcong_prod_1 [rule_format]: "p ∈ zprime --> 5 ≤ p --> a < p - 1 --> [ssetprod (wset (a, p)) = 1] (mod p)" apply (induct a p rule: wset_induct) prefer 2 apply (subst wset.simps) apply (unfold Let_def, auto) apply (subst ssetprod_insert) apply (tactic {* stac (thm "ssetprod_insert") 3 *}) apply (subgoal_tac [5] "zcong (a * inv p a * ssetprod (wset (a - 1, p))) (1 * 1) p") prefer 5 apply (simp add: zmult_assoc) apply (rule_tac [5] zcong_zmult) apply (rule_tac [5] inv_is_inv) apply (tactic "Clarify_tac 4") apply (subgoal_tac [4] "a ∈ wset (a - 1, p)") apply (rule_tac [5] wset_inv_mem_mem) apply (simp_all add: wset_fin) apply (rule inv_distinct, auto) done lemma d22set_eq_wset: "p ∈ zprime ==> d22set (p - 2) = wset (p - 2, p)" apply safe apply (erule wset_mem) apply (rule_tac [2] d22set_g_1) apply (rule_tac [3] d22set_le) apply (rule_tac [4] d22set_mem) apply (erule_tac [4] wset_g_1) prefer 6 apply (subst zle_add1_eq_le [symmetric]) apply (subgoal_tac "p - 2 + 1 = p - 1") apply (simp (no_asm_simp)) apply (erule wset_less, auto) done subsection {* Wilson *} lemma prime_g_5: "p ∈ zprime ==> p ≠ 2 ==> p ≠ 3 ==> 5 ≤ p" apply (unfold zprime_def dvd_def) apply (case_tac "p = 4", auto) apply (rule notE) prefer 2 apply assumption apply (simp (no_asm)) apply (rule_tac x = 2 in exI) apply (safe, arith) apply (rule_tac x = 2 in exI, auto) done theorem Wilson_Russ: "p ∈ zprime ==> [zfact (p - 1) = -1] (mod p)" apply (subgoal_tac "[(p - 1) * zfact (p - 2) = -1 * 1] (mod p)") apply (rule_tac [2] zcong_zmult) apply (simp only: zprime_def) apply (subst zfact.simps) apply (rule_tac t = "p - 1 - 1" and s = "p - 2" in subst, auto) apply (simp only: zcong_def) apply (simp (no_asm_simp)) apply (case_tac "p = 2") apply (simp add: zfact.simps) apply (case_tac "p = 3") apply (simp add: zfact.simps) apply (subgoal_tac "5 ≤ p") apply (erule_tac [2] prime_g_5) apply (subst d22set_prod_zfact [symmetric]) apply (subst d22set_eq_wset) apply (rule_tac [2] wset_zcong_prod_1, auto) done end
lemma inv_is_inv_aux:
1 < m ==> Suc (nat (m - 2)) = nat (m - 1)
lemma inv_is_inv:
[| p ∈ zprime; 0 < a; a < p |] ==> [a * WilsonRuss.inv p a = 1] (mod p)
lemma inv_distinct:
[| p ∈ zprime; 1 < a; a < p - 1 |] ==> a ≠ WilsonRuss.inv p a
lemma inv_not_0:
[| p ∈ zprime; 1 < a; a < p - 1 |] ==> WilsonRuss.inv p a ≠ 0
lemma inv_not_1:
[| p ∈ zprime; 1 < a; a < p - 1 |] ==> WilsonRuss.inv p a ≠ 1
lemma inv_not_p_minus_1_aux:
[a * (p - 1) = 1] (mod p) = [a = p - 1] (mod p)
lemma inv_not_p_minus_1:
[| p ∈ zprime; 1 < a; a < p - 1 |] ==> WilsonRuss.inv p a ≠ p - 1
lemma inv_g_1:
[| p ∈ zprime; 1 < a; a < p - 1 |] ==> 1 < WilsonRuss.inv p a
lemma inv_less_p_minus_1:
[| p ∈ zprime; 1 < a; a < p - 1 |] ==> WilsonRuss.inv p a < p - 1
lemma inv_inv_aux:
5 ≤ p ==> nat (p - 2) * nat (p - 2) = Suc (nat (p - 1) * nat (p - 3))
lemma zcong_zpower_zmult:
[x ^ y = 1] (mod p) ==> [x ^ (y * z) = 1] (mod p)
lemma inv_inv:
[| p ∈ zprime; 5 ≤ p; 0 < a; a < p |] ==> WilsonRuss.inv p (WilsonRuss.inv p a) = a
lemma wset_induct:
[| !!a p. P {} a p; !!a p. [| 1 < a; P (wset (a - 1, p)) (a - 1) p |] ==> P (wset (a, p)) a p |] ==> P (wset (u, v)) u v
lemma wset_mem_imp_or:
[| 1 < a; b ∉ wset (a - 1, p); b ∈ wset (a, p) |] ==> b = a ∨ b = WilsonRuss.inv p a
lemma wset_mem_mem:
1 < a ==> a ∈ wset (a, p)
lemma wset_subset:
[| 1 < a; b ∈ wset (a - 1, p) |] ==> b ∈ wset (a, p)
lemma wset_g_1:
[| p ∈ zprime; a < p - 1; b ∈ wset (a, p) |] ==> 1 < b
lemma wset_less:
[| p ∈ zprime; a < p - 1; b ∈ wset (a, p) |] ==> b < p - 1
lemma wset_mem:
[| p ∈ zprime; a < p - 1; 1 < b; b ≤ a |] ==> b ∈ wset (a, p)
lemma wset_mem_inv_mem:
[| p ∈ zprime; 5 ≤ p; a < p - 1; b ∈ wset (a, p) |] ==> WilsonRuss.inv p b ∈ wset (a, p)
lemma wset_inv_mem_mem:
[| p ∈ zprime; 5 ≤ p; a < p - 1; 1 < b; b < p - 1; WilsonRuss.inv p b ∈ wset (a, p) |] ==> b ∈ wset (a, p)
lemma wset_fin:
finite (wset (a, p))
lemma wset_zcong_prod_1:
[| p ∈ zprime; 5 ≤ p; a < p - 1 |] ==> [ssetprod (wset (a, p)) = 1] (mod p)
lemma d22set_eq_wset:
p ∈ zprime ==> d22set (p - 2) = wset (p - 2, p)
lemma prime_g_5:
[| p ∈ zprime; p ≠ 2; p ≠ 3 |] ==> 5 ≤ p
theorem Wilson_Russ:
p ∈ zprime ==> [zfact (p - 1) = -1] (mod p)