Theory WilsonRuss

Up to index of Isabelle/HOL/HOL-Complex/NumberTheory

theory WilsonRuss = EulerFermat:

(*  Title:      HOL/NumberTheory/WilsonRuss.thy
    ID:         $Id: WilsonRuss.thy,v 1.11 2003/12/03 09:49:36 paulson Exp $
    Author:     Thomas M. Rasmussen
    Copyright   2000  University of Cambridge

Changes by Jeremy Avigad, 2003/02/21:
    repaired proof of prime_g_5
*)

header {* Wilson's Theorem according to Russinoff *}

theory WilsonRuss = EulerFermat:

text {*
  Wilson's Theorem following quite closely Russinoff's approach
  using Boyer-Moore (using finite sets instead of lists, though).
*}

subsection {* Definitions and lemmas *}

consts
  inv :: "int => int => int"
  wset :: "int * int => int set"

defs
  inv_def: "inv p a == (a^(nat (p - 2))) mod p"

recdef wset
  "measure ((λ(a, p). nat a) :: int * int => nat)"
  "wset (a, p) =
    (if 1 < a then
      let ws = wset (a - 1, p)
      in (if a ∈ ws then ws else insert a (insert (inv p a) ws)) else {})"


text {* \medskip @{term [source] inv} *}

lemma inv_is_inv_aux: "1 < m ==> Suc (nat (m - 2)) = nat (m - 1)"
by (subst int_int_eq [symmetric], auto)

lemma inv_is_inv:
    "p ∈ zprime ==> 0 < a ==> a < p ==> [a * inv p a = 1] (mod p)"
  apply (unfold inv_def)
  apply (subst zcong_zmod)
  apply (subst zmod_zmult1_eq [symmetric])
  apply (subst zcong_zmod [symmetric])
  apply (subst power_Suc [symmetric])
  apply (subst inv_is_inv_aux)
   apply (erule_tac [2] Little_Fermat)
   apply (erule_tac [2] zdvd_not_zless)
   apply (unfold zprime_def, auto)
  done

lemma inv_distinct:
    "p ∈ zprime ==> 1 < a ==> a < p - 1 ==> a ≠ inv p a"
  apply safe
  apply (cut_tac a = a and p = p in zcong_square)
     apply (cut_tac [3] a = a and p = p in inv_is_inv, auto)
   apply (subgoal_tac "a = 1")
    apply (rule_tac [2] m = p in zcong_zless_imp_eq)
        apply (subgoal_tac [7] "a = p - 1")
         apply (rule_tac [8] m = p in zcong_zless_imp_eq, auto)
  done

lemma inv_not_0:
    "p ∈ zprime ==> 1 < a ==> a < p - 1 ==> inv p a ≠ 0"
  apply safe
  apply (cut_tac a = a and p = p in inv_is_inv)
     apply (unfold zcong_def, auto)
  apply (subgoal_tac "¬ p dvd 1")
   apply (rule_tac [2] zdvd_not_zless)
    apply (subgoal_tac "p dvd 1")
     prefer 2
     apply (subst zdvd_zminus_iff [symmetric], auto)
  done

lemma inv_not_1:
    "p ∈ zprime ==> 1 < a ==> a < p - 1 ==> inv p a ≠ 1"
  apply safe
  apply (cut_tac a = a and p = p in inv_is_inv)
     prefer 4
     apply simp
     apply (subgoal_tac "a = 1")
      apply (rule_tac [2] zcong_zless_imp_eq, auto)
  done

lemma inv_not_p_minus_1_aux: "[a * (p - 1) = 1] (mod p) = [a = p - 1] (mod p)"
  apply (unfold zcong_def)
  apply (simp add: Ring_and_Field.diff_diff_eq diff_diff_eq2 zdiff_zmult_distrib2)
  apply (rule_tac s = "p dvd -((a + 1) + (p * -a))" in trans)
   apply (simp add: mult_commute)
  apply (subst zdvd_zminus_iff)
  apply (subst zdvd_reduce)
  apply (rule_tac s = "p dvd (a + 1) + (p * -1)" in trans)
   apply (subst zdvd_reduce, auto)
  done

lemma inv_not_p_minus_1:
    "p ∈ zprime ==> 1 < a ==> a < p - 1 ==> inv p a ≠ p - 1"
  apply safe
  apply (cut_tac a = a and p = p in inv_is_inv, auto)
  apply (simp add: inv_not_p_minus_1_aux)
  apply (subgoal_tac "a = p - 1")
   apply (rule_tac [2] zcong_zless_imp_eq, auto)
  done

lemma inv_g_1:
    "p ∈ zprime ==> 1 < a ==> a < p - 1 ==> 1 < inv p a"
  apply (case_tac "0≤ inv p a")
   apply (subgoal_tac "inv p a ≠ 1")
    apply (subgoal_tac "inv p a ≠ 0")
     apply (subst order_less_le)
     apply (subst zle_add1_eq_le [symmetric])
     apply (subst order_less_le)
     apply (rule_tac [2] inv_not_0)
       apply (rule_tac [5] inv_not_1, auto)
  apply (unfold inv_def zprime_def, simp)
  done

lemma inv_less_p_minus_1:
    "p ∈ zprime ==> 1 < a ==> a < p - 1 ==> inv p a < p - 1"
  apply (case_tac "inv p a < p")
   apply (subst order_less_le)
   apply (simp add: inv_not_p_minus_1, auto)
  apply (unfold inv_def zprime_def, simp)
  done

lemma inv_inv_aux: "5 ≤ p ==>
    nat (p - 2) * nat (p - 2) = Suc (nat (p - 1) * nat (p - 3))"
  apply (subst int_int_eq [symmetric])
  apply (simp add: zmult_int [symmetric])
  apply (simp add: zdiff_zmult_distrib zdiff_zmult_distrib2)
  done

lemma zcong_zpower_zmult:
    "[x^y = 1] (mod p) ==> [x^(y * z) = 1] (mod p)"
  apply (induct z)
   apply (auto simp add: zpower_zadd_distrib)
  apply (subgoal_tac "zcong (x^y * x^(y * n)) (1 * 1) p")
   apply (rule_tac [2] zcong_zmult, simp_all)
  done

lemma inv_inv: "p ∈ zprime ==>
    5 ≤ p ==> 0 < a ==> a < p ==> inv p (inv p a) = a"
  apply (unfold inv_def)
  apply (subst zpower_zmod)
  apply (subst zpower_zpower)
  apply (rule zcong_zless_imp_eq)
      prefer 5
      apply (subst zcong_zmod)
      apply (subst mod_mod_trivial)
      apply (subst zcong_zmod [symmetric])
      apply (subst inv_inv_aux)
       apply (subgoal_tac [2]
         "zcong (a * a^(nat (p - 1) * nat (p - 3))) (a * 1) p")
        apply (rule_tac [3] zcong_zmult)
         apply (rule_tac [4] zcong_zpower_zmult)
         apply (erule_tac [4] Little_Fermat)
         apply (rule_tac [4] zdvd_not_zless, simp_all)
  done


text {* \medskip @{term wset} *}

declare wset.simps [simp del]

lemma wset_induct:
  "(!!a p. P {} a p) ==>
    (!!a p. 1 < (a::int) ==> P (wset (a - 1, p)) (a - 1) p
      ==> P (wset (a, p)) a p)
    ==> P (wset (u, v)) u v"
proof -
  case rule_context
  show ?thesis
    apply (rule wset.induct, safe)
     apply (case_tac [2] "1 < a")
      apply (rule_tac [2] rule_context, simp_all)
      apply (simp_all add: wset.simps rule_context)
    done
qed

lemma wset_mem_imp_or [rule_format]:
  "1 < a ==> b ∉ wset (a - 1, p)
    ==> b ∈ wset (a, p) --> b = a ∨ b = inv p a"
  apply (subst wset.simps)
  apply (unfold Let_def, simp)
  done

lemma wset_mem_mem [simp]: "1 < a ==> a ∈ wset (a, p)"
  apply (subst wset.simps)
  apply (unfold Let_def, simp)
  done

lemma wset_subset: "1 < a ==> b ∈ wset (a - 1, p) ==> b ∈ wset (a, p)"
  apply (subst wset.simps)
  apply (unfold Let_def, auto)
  done

lemma wset_g_1 [rule_format]:
    "p ∈ zprime --> a < p - 1 --> b ∈ wset (a, p) --> 1 < b"
  apply (induct a p rule: wset_induct, auto)
  apply (case_tac "b = a")
   apply (case_tac [2] "b = inv p a")
    apply (subgoal_tac [3] "b = a ∨ b = inv p a")
     apply (rule_tac [4] wset_mem_imp_or)
       prefer 2
       apply simp
       apply (rule inv_g_1, auto)
  done

lemma wset_less [rule_format]:
    "p ∈ zprime --> a < p - 1 --> b ∈ wset (a, p) --> b < p - 1"
  apply (induct a p rule: wset_induct, auto)
  apply (case_tac "b = a")
   apply (case_tac [2] "b = inv p a")
    apply (subgoal_tac [3] "b = a ∨ b = inv p a")
     apply (rule_tac [4] wset_mem_imp_or)
       prefer 2
       apply simp
       apply (rule inv_less_p_minus_1, auto)
  done

lemma wset_mem [rule_format]:
  "p ∈ zprime -->
    a < p - 1 --> 1 < b --> b ≤ a --> b ∈ wset (a, p)"
  apply (induct a p rule: wset.induct, auto)
   apply (subgoal_tac "b = a")
    apply (rule_tac [2] zle_anti_sym)
     apply (rule_tac [4] wset_subset)
      apply (simp (no_asm_simp))
     apply auto
  done

lemma wset_mem_inv_mem [rule_format]:
  "p ∈ zprime --> 5 ≤ p --> a < p - 1 --> b ∈ wset (a, p)
    --> inv p b ∈ wset (a, p)"
  apply (induct a p rule: wset_induct, auto)
   apply (case_tac "b = a")
    apply (subst wset.simps)
    apply (unfold Let_def)
    apply (rule_tac [3] wset_subset, auto)
  apply (case_tac "b = inv p a")
   apply (simp (no_asm_simp))
   apply (subst inv_inv)
       apply (subgoal_tac [6] "b = a ∨ b = inv p a")
        apply (rule_tac [7] wset_mem_imp_or, auto)
  done

lemma wset_inv_mem_mem:
  "p ∈ zprime ==> 5 ≤ p ==> a < p - 1 ==> 1 < b ==> b < p - 1
    ==> inv p b ∈ wset (a, p) ==> b ∈ wset (a, p)"
  apply (rule_tac s = "inv p (inv p b)" and t = b in subst)
   apply (rule_tac [2] wset_mem_inv_mem)
      apply (rule inv_inv, simp_all)
  done

lemma wset_fin: "finite (wset (a, p))"
  apply (induct a p rule: wset_induct)
   prefer 2
   apply (subst wset.simps)
   apply (unfold Let_def, auto)
  done

lemma wset_zcong_prod_1 [rule_format]:
  "p ∈ zprime -->
    5 ≤ p --> a < p - 1 --> [ssetprod (wset (a, p)) = 1] (mod p)"
  apply (induct a p rule: wset_induct)
   prefer 2
   apply (subst wset.simps)
   apply (unfold Let_def, auto)
  apply (subst ssetprod_insert)
    apply (tactic {* stac (thm "ssetprod_insert") 3 *})
      apply (subgoal_tac [5]
        "zcong (a * inv p a * ssetprod (wset (a - 1, p))) (1 * 1) p")
       prefer 5
       apply (simp add: zmult_assoc)
      apply (rule_tac [5] zcong_zmult)
       apply (rule_tac [5] inv_is_inv)
         apply (tactic "Clarify_tac 4")
         apply (subgoal_tac [4] "a ∈ wset (a - 1, p)")
          apply (rule_tac [5] wset_inv_mem_mem)
               apply (simp_all add: wset_fin)
  apply (rule inv_distinct, auto)
  done

lemma d22set_eq_wset: "p ∈ zprime ==> d22set (p - 2) = wset (p - 2, p)"
  apply safe
   apply (erule wset_mem)
     apply (rule_tac [2] d22set_g_1)
     apply (rule_tac [3] d22set_le)
     apply (rule_tac [4] d22set_mem)
      apply (erule_tac [4] wset_g_1)
       prefer 6
       apply (subst zle_add1_eq_le [symmetric])
       apply (subgoal_tac "p - 2 + 1 = p - 1")
        apply (simp (no_asm_simp))
        apply (erule wset_less, auto)
  done


subsection {* Wilson *}

lemma prime_g_5: "p ∈ zprime ==> p ≠ 2 ==> p ≠ 3 ==> 5 ≤ p"
  apply (unfold zprime_def dvd_def)
  apply (case_tac "p = 4", auto)
   apply (rule notE)
    prefer 2
    apply assumption
   apply (simp (no_asm))
   apply (rule_tac x = 2 in exI)
   apply (safe, arith)
     apply (rule_tac x = 2 in exI, auto)
  done

theorem Wilson_Russ:
    "p ∈ zprime ==> [zfact (p - 1) = -1] (mod p)"
  apply (subgoal_tac "[(p - 1) * zfact (p - 2) = -1 * 1] (mod p)")
   apply (rule_tac [2] zcong_zmult)
    apply (simp only: zprime_def)
    apply (subst zfact.simps)
    apply (rule_tac t = "p - 1 - 1" and s = "p - 2" in subst, auto)
   apply (simp only: zcong_def)
   apply (simp (no_asm_simp))
  apply (case_tac "p = 2")
   apply (simp add: zfact.simps)
  apply (case_tac "p = 3")
   apply (simp add: zfact.simps)
  apply (subgoal_tac "5 ≤ p")
   apply (erule_tac [2] prime_g_5)
    apply (subst d22set_prod_zfact [symmetric])
    apply (subst d22set_eq_wset)
     apply (rule_tac [2] wset_zcong_prod_1, auto)
  done

end

Definitions and lemmas

lemma inv_is_inv_aux:

  1 < m ==> Suc (nat (m - 2)) = nat (m - 1)

lemma inv_is_inv:

  [| p ∈ zprime; 0 < a; a < p |] ==> [a * WilsonRuss.inv p a = 1] (mod p)

lemma inv_distinct:

  [| p ∈ zprime; 1 < a; a < p - 1 |] ==> a ≠ WilsonRuss.inv p a

lemma inv_not_0:

  [| p ∈ zprime; 1 < a; a < p - 1 |] ==> WilsonRuss.inv p a ≠ 0

lemma inv_not_1:

  [| p ∈ zprime; 1 < a; a < p - 1 |] ==> WilsonRuss.inv p a ≠ 1

lemma inv_not_p_minus_1_aux:

  [a * (p - 1) = 1] (mod p) = [a = p - 1] (mod p)

lemma inv_not_p_minus_1:

  [| p ∈ zprime; 1 < a; a < p - 1 |] ==> WilsonRuss.inv p ap - 1

lemma inv_g_1:

  [| p ∈ zprime; 1 < a; a < p - 1 |] ==> 1 < WilsonRuss.inv p a

lemma inv_less_p_minus_1:

  [| p ∈ zprime; 1 < a; a < p - 1 |] ==> WilsonRuss.inv p a < p - 1

lemma inv_inv_aux:

  5 ≤ p ==> nat (p - 2) * nat (p - 2) = Suc (nat (p - 1) * nat (p - 3))

lemma zcong_zpower_zmult:

  [x ^ y = 1] (mod p) ==> [x ^ (y * z) = 1] (mod p)

lemma inv_inv:

  [| p ∈ zprime; 5 ≤ p; 0 < a; a < p |]
  ==> WilsonRuss.inv p (WilsonRuss.inv p a) = a

lemma wset_induct:

  [| !!a p. P {} a p;
     !!a p. [| 1 < a; P (wset (a - 1, p)) (a - 1) p |] ==> P (wset (a, p)) a p |]
  ==> P (wset (u, v)) u v

lemma wset_mem_imp_or:

  [| 1 < a; b ∉ wset (a - 1, p); b ∈ wset (a, p) |]
  ==> b = ab = WilsonRuss.inv p a

lemma wset_mem_mem:

  1 < a ==> a ∈ wset (a, p)

lemma wset_subset:

  [| 1 < a; b ∈ wset (a - 1, p) |] ==> b ∈ wset (a, p)

lemma wset_g_1:

  [| p ∈ zprime; a < p - 1; b ∈ wset (a, p) |] ==> 1 < b

lemma wset_less:

  [| p ∈ zprime; a < p - 1; b ∈ wset (a, p) |] ==> b < p - 1

lemma wset_mem:

  [| p ∈ zprime; a < p - 1; 1 < b; ba |] ==> b ∈ wset (a, p)

lemma wset_mem_inv_mem:

  [| p ∈ zprime; 5 ≤ p; a < p - 1; b ∈ wset (a, p) |]
  ==> WilsonRuss.inv p b ∈ wset (a, p)

lemma wset_inv_mem_mem:

  [| p ∈ zprime; 5 ≤ p; a < p - 1; 1 < b; b < p - 1;
     WilsonRuss.inv p b ∈ wset (a, p) |]
  ==> b ∈ wset (a, p)

lemma wset_fin:

  finite (wset (a, p))

lemma wset_zcong_prod_1:

  [| p ∈ zprime; 5 ≤ p; a < p - 1 |] ==> [ssetprod (wset (a, p)) = 1] (mod p)

lemma d22set_eq_wset:

  p ∈ zprime ==> d22set (p - 2) = wset (p - 2, p)

Wilson

lemma prime_g_5:

  [| p ∈ zprime; p ≠ 2; p ≠ 3 |] ==> 5 ≤ p

theorem Wilson_Russ:

  p ∈ zprime ==> [zfact (p - 1) = -1] (mod p)