Proximal probe techniques are revolutionizing physical and biological sciences, owing to their ability to explore and manipulate matter at the nanoscale, and to operate in various environments (including liquids). Proximal probe techniques rely on the use of nanoscale probes, positioned and scanned in the immediate vicinity of the material surface. Their development is often viewed as a first step towards nanotechnology, since they demonstrate the feasibility of building purposeful structures one atom or one (macro)molecule at a time. This course is designed for the students of chemistry, biology physics and engineering, who are interested in the fundamentals of proximal probe techniques and in their applications in various areas, converging into a rapidly developing, interdisciplinary field of nanoscience. It will provide physical background of such basic techniques as Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy (STM), and Near-Field Scanning Optical Microscopy (NSOM) and of their variants. Throughout the course, the working "virtual AFM" computer model will be assembled in classroom by each student and then used extensively to gain thorough understanding of AFM operation principles. Particular emphasis will be placed on modes of operation facilitating chemical contrast and contrast based on other material properties. (No prior experience with computer programming required).