Fundamentals of stress and strain. Linear elastic behavior. Tensile testing and yield criteria. Relationships between stress and strain for the case of plastic deformation. Theoretical strength. Tensile tests of single crystals and the idea of a slip system. Shear stress versus shear strain curves for single crystals and the effects of crystal orientation, temperature, atoms in solid solution and precipitates on the shapes of such curves. Taylor's connection between tensile curves of single crystals and those of polycrystalline samples. Dislocations and plastic deformation. Strengthening mechanisms including solid-solution strengthening, strengthening by precipitates, work hardening and grain size effects on strength. Approaches to quantifying the fracture resistance of materials, including the Griffith approach, the energy release rate approach and the stress intensity factor approach. Crack tip behavior including stresses and strains at crack tips and the plastic zone. Fracture mechanisms including ductile fracture, cleavage fracture and intergranular fracture. The fracture of highly brittle materials. Time permitting fatigue and creep of materials will be discussed.